 Zigbee 시스템과 PLC 모델간의 인터페이스에 관한 연구

Hyo-Suk Kim, Sung-Kwan Cho, Su-Goog Shon, Jae-Jo Lee, Hui-Myoung Oh, Sung-Soo Choi
Swon University
KERI(Korea Electrotechnology Research Institute)

Abstract - Zigbee Alliance에서 표준화 과정 중인 Zigbee Stack을 가진 Zigbee 시스템은 동신메모리에 RF(Radio Frequency)을 사용하는. 본 논문에서는 RF를 사용하는 기존의 Zigbee 시스템이 신호재대로는 주파수 속도로 인한 간섭문제 등에 약간 장점을 고려하여 유선전도체에서 Power Line을 사용하는 PLC 시스템과의 인터페이스를 제공한다. 이 제안된 시스템은 Zigbee 시스템과 PLC 시스템간에 UART 인터페이스를 사용함으로써 Zigbee 네트워크의 완성을 극복할 수 있으며, Zigbee 시스템의 사용 범위 및 성능 향상을 기대할 수 있다.

1. 서론

Zigbee Specification v1.0(1)]에 발표된 이후, Zigbee 시스템에 대한 관심이 지속적으로 증가하고 있다. Zigbee 시스템은 통신망의 중요한 일부이며, 많은 업체들의 연구에 있어 필수적이다. 또한 Zigbee 시스템의 사용은 교육, 의료, 가정, 정밀 농경, 통신, 등에 널리 사용되고 있다. 본 연구에서는 Zigbee 시스템의 장점과 PLC 모델간의 인터페이스를 제공함으로써 Zigbee 시스템의 사용 범위를 확대하고 성능 향상을 기대할 수 있지만, 또한, 맨앞이 되어 잠재적으로 보일 수 있다.

표 1 Zigbee 시스템 특성

Operating Frequency	868MHz / 915MHz	2.4GHz
Data rate	20kbps / 40kbps	250kbps
Range	10~100m	
Latency	Down to 15ms (wake up)	
Channels	16 channels	
Addressing	CSMA/CA and slotted CSMA/CA	
Security	128bit AES	
Network Topology	Star, Tree, Mesh	
Number of device	2 ~ 65,000	

2. 본론

2.1 Zigbee Stack Architecture

Zigbee Alliance에서 표준화 과정 중인 Zigbee Stack의 전체적인 하이브리드는 그림 1과 같다. IEEE 802.15.4의 Physical Communication은 868,915MHz, 2.4GHz의 두 가지 빈도가 있으며, MAC 층에서는 채널별 방식으로 CSMA/CA 방식을 사용한다. Zigbee의 Network 층에서는 Tree, Peer-to-Peer, Star, Mesh(Full Function Device 둘째 소프트웨어 구현 가능) 세 가지 모드로 구성되어 있으며 Application Support Sub-layer(APS), Zigbee Device Object(ZDO), 여러 Application Object로 구성된 Application Framework(ASF)로 구성되어 있다.

2.1.1 Physical, MAC, Network Layer

Zigbee Stack의 Physical 층은 주파수 속도는 지역마다 다르지만 미국은 915MHz를 사용하고, 유럽은 868MHz를 사용하며 기타 나머지 지역은 2.4GHz 채널 사용을 한다. 표 1에서 볼 수 있듯이 868MHz 채널에 할당된 링은 868.9MHz 채널에는 40kHz, 2.4GHz 채널에는 20kHz 시그널이 서로 교차하여 동작할 수 있는데, 이는 Zigbee를 사용할 수 있는 장치를 강제로 동작하게 하기 때문에 발생한 결과이다. Network 층은 Tree, Mesh, Star, Network Topology를 구성한다. Zigbee 시스템의 사용자는 데이터통신에 FFD(Full Function Device)와 RFD(Reduce Function Device) 두 가지 타입이 있다. FFD는 다른 장치들과 통신을 할 수 있으며, 전용데이터에서 Coordinator나 Router 역할을 하고 어떠한 네트워크 토클을 사용할 수 있다. RFD는 단일 또는 소수의 장치들만에게 FFD보다 제한적으로 통신하는 장치이다. Network 층에서는 채널별로 네트워크의 성능을 향상시켜 주고, 제기 된 문제를 해결하기 위한 Routing Table을 유지 관리하는 기능 또한 Network 층에서 제공된다.

2.1.2 Application 층

Zigbee Stack에서 Application 층은 APS, ZDO, AF로 구성되어 있으며 Application 층의 인터페이스는 그림 2와 같다. APS는 Network 층과 Application 층 사이의 인터페이스를 제공한다. Service Access Point(SAP)를 통해 인터페이스 한다. APS는 네트워크 내의 모든 장치의 Application Data Unit의 전송을 위한 APSDE의 비타입의 Send, Unbind, APS Information Base(AIB)의 정보를 갖고 셋 작업을 하여 결과로 AIB의 정보를 APSDE로 전달된다.

그림 1 Zigbee Stack Architecture

Application Layer

Application Framework (AF)

Application Object (APS)

Application Object (ZDO)

Application Support Sub-layer (APS)

Network Layer (Tree, Mesh, Star Topology)

Network (NWK) Layer

Media Access Control(MAC) Layer

IEEE 802.15.4 Silicon

Physical Layer (868/915MHz, 2.4GHz)

그림 2 Application 층 Interface model

APSD는 APSDE-SAP를 통해서 데이터를 주고받으며 APSDE-SAP는 동작에 따른 값을 입력으로 구성되어 있다. APSDE-SAP는 원본 데이터를 전달하며 APSDE-SAPconfirmation은 데이터 전송과의 결과를 보고한다. APSDE-SAP는 데이터 송수신하기 위한 Network 층으로부터 데이터를 받거나 APS가 상위 Application에 전달되는 역할을 한다.
3.2 Zibee 시스템과 PLC 모델 간 UART 인터페이스

이 논문에서는 제안된 시스템의 구성을 논의하기 위해, Zibee Sensor Module로 구성된 Zibee 네트워크와 PLC 모델 간의 인터페이스를 통해 연결할 때의 단계를 설명한다. 이 인터페이스는 입력이지는 PowerLine을 통해 다른 네트워크와 연결될 수 있으며, Power Line에 연결된 PLC를 통해 네트워크나 노드의 정보 등을 모니터링 할 수 있다.

![그림 6] Zibee 시스템과 PLC 모델의 UART 인터페이스

Zibee Sensor Module의 RF Transceiver, 8bit Microcontroller, Sensor로 구성되어 있으며, 전자제품의 RF Transceiver를 통해 UART를 수신한다. UART를 수신한 데이터는 PLC 모델에 전달된다. 변환된 데이터가 다음의 대표적인 데이터에 대한 명령이며, 데이터를 변환하여 반환한다. Zibee Sensor Module는 센서의 종류, 장선, 데이터 속도 등 여러 Application 데이터와 PLC frame의 Transaction Data 채널을 추가한다. 여기서 PLC frame을 사용하는 이유는 Zibee가 KVP보다 크고 많은 정보가 캐리하다가 사용자가 정의한 데이터를 추가하기 용이하기 때문이다.

![그림 7] Zibee 시스템과 PLC모델의 볼트 다이어그램

3. 결론

![그림 8] APS Data Frame Format

- APS Header Address Field APS PayLoad
 8 8 8 8 8 8 8 8
 Frame Control Destination end Point Cluster Identifier Profile Identifier Source end Point Frame Payload

![그림 9] APS Data Frame Format

- APS Header Address Field APS PayLoad
 8 8 8 8 8 8 8 8
 Frame Control Destination end Point Cluster Identifier Profile Identifier Source end Point Frame Payload

![그림 10] APS Data Frame Format

- APS Header Address Field APS PayLoad
 8 8 8 8 8 8 8 8
 Frame Control Destination end Point Cluster Identifier Profile Identifier Source end Point Frame Payload

[참고 문헌]
[1] Zibee Specification v1.0, 2004