해석적 방법에 의한 횡자속형 전동기 특성 분석

창 정환 김지환 강도현 I.A. Viorel
횡자속 전동기 연구그룹 한국전기연구원

Characteristic analysis of transverse flux machine by analytical way

Junghwan Chang, Jiwon Kim, Dohyun Kang, I.A. Viorel
Transverse Flux Machine Research Group, KERI

Abstract - 횡자속형 전동기는 3차원적인 자속의 효과 때문에 기존의 전
동기와는 달리 2차원적인 수직변이가 없어지지 않으며 특성 분석에 상대적
으로 많은 계산 시간을 필요로 한다. 본 논문에서는 피어슨식량과 실질
의 포로를 고려하기 위한 최소한의 유한 요소 해석을 결합하여 횡자속형 전동
기의 특성을 분석하기 위한 해석적인 방법을 제시하고자 한다. 본 논문에서
제시하고 있는 주력 및 세로 자속방향에 의한 수직방향 전동기 세
어와 같은 개발이나 최적 설계에 도움될 수 있음을 것으로 판단한다.

1. 서 론

연구자들의 포로하지 않는 횡자속형 전동기는 스위치드 유리식 전동기
와 같이 2중 동작 구조를 가지고 있지만 고정자가 대체하는 이동자의 구조
는 고정자 구조와 동일하고 각각의 동작 모드로 구성되어 있다. 최근
문헌의 그림과 같은 새로운 자속의 필요로 인해 횡자속형 전동기의 영역에
의한 횡자속형 전동기의 경우 그런적인 다른 전동기에 비해 상대적으로 해석적인 접근 방법
이 소개되지 않아 적절히 설계나 설계 기법을 적용하기에 극단한 점
이 많았다. 본 논문에서는 이를 반영하고 그림 1과 같이 연구 자속의
포로를 고려하지 않는 가장 단순한 모델에 대하여 피어슨식량과 실질
의 포로를 고려하기 위한 최소한의 유한 요소 해석을 결합하여 횡자속형 전동기의 해석
적인 포로를 제시하고자 한다.

2. 해석적 방법

Variable equivalent air-gap permeance라는 개념은 스위치드 유리식 전동기
전동기에서 적용하여 본 개념으로 [1-5]의 각각 단위에 대하여 다음 수식 (1)과
같이 적용할 수 있다. 본 논문에서는 유한 요소법에 의한 실질의 포로를
고려하여 횡자속형 전동기로 확장하였다.

\[P_i(a,i) = \frac{(1 + P_{\text{core}} - \alpha)}{K_t + P_i(a,i) + 2g} ; \quad \alpha = \pi \frac{2}{r_p} \] \hspace{2cm} (1)

여기서, \(g, K_t, P_{\text{core}}, K_i(a,i) \) 각각 공극의 길이, 카터리수(Carter’s factor),
variable equivalent air-gap permeance coefficient, 그리고 포로 계수를 나타낸다. [2] 자작지로서의 \(\text{Ohm} \)의 범위를 적용하여 상당히 적절한 \(N_e, N_p, N_q \), 상경공극에 대하여 공극에서의 자속 모드는 다음과 같이 나타낼 수 있다.

\[B_{p}(a,i) = N_e \times i \times \mu_0 \times B_{p} \] \hspace{2cm} (2)

식 (1)과 (2)를 결합하면 시 단면의 \(A_p \)에 대하여 전체 자속방향은 수식 (3)과 같다.

\[A_{o}(a,i) = K_{i1}(a) \left(\frac{1 + P_{\text{core}}(a) - \alpha}{K_{o1}(a) + 2g} \right) \] \hspace{2cm} (3)

\[A_{o}(a,i) = K_{i1}(a) \left(\frac{1 + P_{\text{core}}(a) - \alpha}{K_{o1}(a) + 2g} \right) \]

\[= K_{i0}(a) \left(1 + \frac{\alpha}{\mu_0} \right) \frac{\ell_p}{\ell_p} \] \hspace{2cm} (4)

여기서 \(\ell_p, \ell_p \) 는 필수 및 공극에서의 자속의 평균 길이를 나타낸 것이고
\(\mu_0 \)는 실질의 초기 투자용량이다. 한편 포로를 고려하지 않았을 경우의 자속
방향방향으로 나타내는 \(A_{o}(a,i) \)는 일정한 상 인덕턴스 \(L_{o}(a) \)로 다음식 같이

\[A_{o}(a,i) = L_{o}(a) \] \hspace{2cm} (5)

\[L_{o}(a) \]는 그림 2에서와 같이 유한 요소법에 의해 구한 횡자속형 전동기의
해석적 기법으로 구성할 수 있다. 한편 포로를 고려함 경우 환적 자속방향으로 나타내는 \(L_{o}(a) \)는 다음의 식으로 적용하여 횡자속형 전동기의 포로

\[L_{o}(a) = \frac{i}{(a + b + i + c + \alpha)^2} \] \hspace{2cm} (6)

식 (5)와 (6)을 결합하면 포로계수는 다음과 같이 나타날 수 있다.

\[K_{i0}(a) = K_{o0} \times L_{o}(a) \times (a + b + i + c + \alpha)^2 \] \hspace{2cm} (7)

따라서 이동자의 적용하는 유한 요소법을 적용하여

\[F = \frac{i}{2} \left(K_{i0}(a) \frac{1 + P_{\text{core}}(a) - \alpha}{K_{o0}} \right) \frac{1 + P_{\text{core}}(a) - \alpha}{K_{o0}} \] \hspace{2cm} (8)

그럼과 포로 계수를 구하기 위해서는 유한 요소법이 필요하다. 따라서
해석적 주력여부를 구하기 위해 다음의 최적 투자용량을 포함한 포로

\[K_{i0}(a) = K_{o0} \times (A_{o1} + \beta \alpha) \] \hspace{2cm} (9)

여기서 \(A_{o1} \)는 정밀 투자와 비정밀 투자에서의 포로 계수 \(K_{o0} \)와
\(K_{o0} \)를 이용한 다음의 수식에서 구할 수 있다.

\[A_{o1}(a,i) = L_{o}(a) \]
\[
A \cos \theta + B = K_{\text{eff}} \\
A \cos (-\theta) + B = K_{\text{m}}
\]

따라서 채로 자속량은 식 (9)을 이용하여 다음과 같이 표현할 수 있다.

\[
A(\alpha, \omega) = K_{e}(A) \cdot \frac{1 + P \omega^2}{K_{e} \cdot (A \omega^2 + B)}
\]

이상에서의 값은 정렬 및 비정렬 위치에서의 유한 요소 해석에 의해 계수 \(A\)와 \(B\)를 결정한 뒤 등가 성공 피드백 \(P\)과 각각의 기지역의 최대 휘어값을 이용하여 수정함으로써 보다 정확하게 특성을 표현할 수 있는 수식을 도출할 수 있다.

3. 수치적인 예 및 결론

본문에서 주어진 해석적인 방법의 타당성을 검토하기 위해 그림 1과 같은 모델에 대하여 3차원 유한 요소 해석을 적용한 결과와 비교하였다. 표 1은 해석대로 모델의 지수, 해석적인 특성 및 주어진 수식을 이용하여 계산한 파라미터 값을 나타낸 것이다.

![표 1](image)

(가) \(A\) coefficient
(나) \(B\) coefficient
(다) \(P\) coefficient

그림 5에는 이상의 결과를 바탕으로 계산한 추력값을 3차원 유한 요소 해석에 의한 계산값과 비교한 것으로 해석적 방법의 타당성을 확인할 수 있다. 따라서 본 논문에서 제시한 해석적 방법은 특성측정 전동기 특성 분석을 포함하여 최적 설계 방향을 적용하기 위한 수단으로 활용할 수 있을 것으로 판단되며 앞으로는 각각 4차 form을 포함한 전동기들 대상으로 해석적인 접근 방법에 대한 연구가 진행될 예정이다.

[참고 문헌]

![그림 3]
![그림 4]
![그림 5]