중대규모 계통연계형 PV시스템의 성능결과

소 정 순, 유권 종, 정영 석, 유병구, 황혜미, 최주엽
한국에너지기술연구원, 광운대학교

Performance monitoring results of large-scale PV system

Jung Hun So, Gwon Jong Yu, Young Sae Jung, Byung Gyu Yu, Hye Mi Hwan, Ju Yeop Choi
Korea Institute of Energy Research, Kwangwoon University

Abstract - This paper presents performance monitoring results of large scale photovoltaic (PV) system supported by general dissemination & regional energy program in Korea, government policies for new and renewable energy resources. 80kW PV system and monitoring system is constructed and monitored PV system performance to observe the overall effect of environmental conditions on their operation characteristics. The PV system performance has been evaluated and analyzed for component perspective (PV array and power conditioning unit) and global perspective (system efficiency, capacity factor, and electrical power energy and power quality etc.) for six month monitoring periods.

1. 서론

교육과 기후변화협약에 따른 안정적이고 환경친화적인 에너지원 신재생에너지 기술개발에 대한 연구개발과 관리의 전제적으로 중요한 허락에 입안되어 대량생산중인 (PV, Photovoltaic) 시스템을 포함한 신재생에너지의 실행시점이 최근에 급격히 증가하고 있다. [1-3] 이에 따라 본 논문은 평판치의 국내 해석력이 향상된 전지판설계 및 계통연계 시의 문제점 및 대처방안 등의 실행화 기술 개발의 중요성과 대체를 고려하였다. [1-12] 따라서 본 논문에서는 PV시스템 실행화 기술의 확립을 위한 초대형계에서 중대규모 계통연계형 PV시스템이 대형용모니터링 수행하여 환경조건 변화 및 계통연계에 따른 PV시스템 및 구성요소기기에 성능특성 및 발생되는 문제점에서 양립적으로 본론 검토하였다.

2. 시스템 개요

중대규모 PV시스템의 종합적인 성능측정 및 문제점을 분석하기 위한 적절대형 PV시스템을 포함한 전체시스템 구성의 1스테이트로 보고 하였다. 설치된 PV시스템의 PV에어워치 상기사항생산력과 전지판사의 EPC, 방위적 -5°(석기)의 고정방식으로 설치되었고 설치전장은 81kW이다. PV에어워치는 90%의 대충정전력을 보장하고 있으며, 보상방식을 사용하여 설치전장은 170MW, 100MW, 46MW로 설치되어 있고, PCS (Power conditioning system)는 40kW로 설치되어 있다. 사용된 PCS는 정격시 변환효율은 99% 이상, 역률은 95% 이상이고 전력공급 명제는 5% 이하이다. 또한 갑작 혹은 이상발생시 회로를 보호할 수 있는 장치를 포함하고 있다.

PV시스템의 종합적인 실증성능의 평가 분석 및 실행화 기술을 개발하기 위해서 기상 및 전기적 성능측정사를 사용한 실시간 운영모니터링시스템을 설치 구성하여 2005년 8월부터 현재까지 19개 측정항 이상의 실질적 파라임을 수집하여 데이터베이스 구축하였다.

3. PV시스템 성능결과 및 분석

3.1 PV에어워치 성능

적용대비 PV시스템의 분석기간인 2005년 9월부터 2006년 3월까지의 성능평가을 통해 전력소모용 및 중전전력전달선 전력량을 보여주고 있다. 그림 2에서 분석기간동안 핵심 PV에어워치에서 발생한 출력전력량과 변환효율 특성은 보여주고 있다. PV에어워치에서 발생한 총 출력전력량은 각각 29.66MWh (PV_1), 24.95MWh (PV_2)로 변환효율은 9.3% -11.9%범위를 보인다. 그림에서 보는 바와 같이, PV에어워치는 변환기장을 고장 혹은 정상환신의 안정적 성능을 기록하였다. 그림 3은 전력모니터링에서 PV에어워치 (PV_1)의 변환효율 특성을 보여주고 있다. 진조장소는 영향력이 200Mw 이상일 때, PV에어워치의 변환효율은 그 동일한 영역에서 200Mw 이상이 비교적 높은 변환효율을 보인다. 변환장소의 변화는 PV에어워치의 안정적 특성의 비정상성으로 인해 6% - 12%로 변환효율의 범위가 적고, PV에어워치의 변환효율은 보다 프로필과 동일하거나 변환효율에 큰 영향을 미치며, 동역계수에 따른 PV에어워치 발전성능에 대한 평가에서는 필요하다.

3.2 PCS 성능

그림 4에서 분석기간동안, PCS의 변환효율을 및 출력전력량을 보여주고 있다. PCS에서 발생한 총 출력전력량은 각각 27.5MWh (PV_1), 27.2MWh (PV_2)로 변환효율은 92.5%, 92.8%이다. 일조장소가 300W/m² 이상에서 PCS가 온전히 작동하여 전력소모용 및 중전전력전달선 전력량을 보이는데, 일조장소가 25W/m²로 달아난 PCS는 작동정지되었다. PCS의 변환효율은 일조장소에 대로 PCS에의 변환효율의 성능에 따라 결정하였다. 그림 5는 변환기장과 실증성능의 결과에서 변환기장의 변환효율 특성을 보여준다. 일조장소가 400W/m² 이상에서 PCS는 93% 이상의 변환효율을 가진다. 일조장소가 정도여서는 PCS에의 운전정확성 성능성능으로 PCS

| <그림 1> 전체 시스템 구성요소 | <그림 2> 6월 PV 에어워치 성능결과 | <그림 3> 6월 PV 에어워치 변환효율 |

- 1165 -
의 변환효율이 비교적 일정한 특성을 가진다. 그러나 저중장소도 영역에서는 PV이어의 직선형적인 성능특성으로 MPP가 정확하게 제어되지 않으므로 PCS의 변환효율 변화를 평가하기가 다소 곤란하다. 그리므로 PC의 출력전력에 대한 각 상해 전류 총합의 실험(TDD) 결과를 보여준다. 경우의 적절한 결과다. 10kW기에 때, PC의 전류를 0.98이다. 주의도 및 손상정도를 고려할 경우, PCS의 전력량은 설계규격에서 제시한 성능을 만족하고 있다는 것을 알 수 있다. 변환효율 면에서 및 내전력을 순서가 큰 동료 PV시스템에 고장 혹은 결함이 없는 상태에서 되기 위해서는 PR이 최소 0.75이상이 되어야 한다는 것을 제시할 수 있다. 움직이 떨어 보다 정확한 분석평가가 필요하여 본 연구에서는 PV시스템의 이상공급이 확대되면서 집중적으로 PV시스템이 사용됨에 따라 제어장치의 고장에 대한 상호작용, 전압상승 등의 문제점에 대해서도 분석해낼 수 있는 간단한연구방법과 제어장치의 문제가 대한 대책기 술 연구가 필요하다.

![그림 4] 월별 PCS 성능결과

![그림 5] PCS 변환효율

![그림 6] PCS 각각별 전류 총합의 (THD)

3.3 PV시스템 성능

그림 3은 기동면적에 PV시스템의 설계 전력효율 및 시스템이용률을 특성을 보여주고 있다. 범위적동력 PV시스템의 평균 변형효율은 10.1% (PV-1), 9.6% (PV-2)이고, 종량시스템이용률은 각각 13.1% (PV-1), 13.1% (PV-2)이다. PV시스템은 그림, 일시적 및 PV이어의 모두와의 환경조건의 변화 및 PC의 전력, 비대면의 여러 손실요인에 따라서 반 전성능이 결정된다. 따라서 PV시스템의 성능개선을 위해서는 이러한 손실 요인에 대한 정확한 분석평가가 필요하다.[4] 그림 8은 변환장치 동안의 PV시스템의 변형 및 성능특성을 PR (Performance ratio)를 이용하여 정확한 결과를 보여준다.4 PV시스템의 변형은 PR을 각각 0.82 (PV-1), 0.81 (PV-2)이며 PV이어의 손실인 Le (Capture losses)나 시스템 손실인 Ls (System losses)에 각각 0.12 (PV-1), 0.13 (PV-2) 및 0.06 (PV-1), 0.07 (PV-2)이다. 일반적으로 소규모 PV시스템에서는 PR가 0.7이하인 경우, 시스템의 성능에 영향을 미치는 여러 장애요인이 있다는 것을 의미한다. 그러나 중대규모 PV시스템의 성능보정면 결과는 변환품평이 PCS의 변환효율 변형 및 내전력을 순서가 큰 동료 PV시스템에 고장 혹은 결함이 없는 상태에서 되기 위해서는 PR이 최소 0.75이상이 되어야 한다는 것을 제시할 수 있다. 움직이 떨어 보다 정확한 분석평가가 필요하여 본 연구에서는 PV시스템의 이상공급이 확대되면서 집중적으로 PV시스템이 사용됨에 따라 제어장치의 고장에 대한 상호작용, 전압상승 등의 문제점에 대해서도 분석해낼 수 있는 간단한연구방법과 제어장치의 문제가 대한 대책기 술 연구가 필요하다.

![그림 7] 월별 PV 시스템 성능결과

![그림 8] 변환장치동에 PV시스템 성능결과

4. 결 론

중대규모 제어장치타당 PV시스템의 실시간 성능보개선을 통한 신속성과 동시에 설계장치의 유용한 성능특성 및 문제점의 정확한 분석해결을 필요하다. 이러한 성능보개선을 통한 하에 사용램 PV시스템의 성장량과 제어장치의 문제점에 대한 대책기법을 개발하기 위한 정확한 실험 및 설계조회를 확립하기 위해서 성능데이터베이스를 구축 운영한 계획이다. 성능데이터베이스를 통한 PV시스템의 성능특성, 정량화 기술 및 대책기법을 개발하여 향후 이용량이 확대되고 있는 PV시스템에 적용하 여 유용성 및 탐색성을 검증할 계획이다.

[참고 문헌]