A Study on controller of converter for fuel cell

Ju Sung Kang*, Kang Hoon Koh, Kwang Ju Choi, Doo Sung Hong, Hyun Woo Lee
Division of Electrical Engineering, Kyungnam University

Abstract - This paper is aimed at presenting a computational model of a proton exchange membrane (PEM) fuel cell stack. The proposed simulation model is simple and at the same time includes all the important characteristics of a fuel cell stack. Close agreement between the simulation, manufacturer and experimental results confirm the validity and usefulness of the proposed PC model.

Also, we propose the variable PI control method which has the best of follow efficiency than the PI control method, we confirm a reduced ripple and improved follow efficiencies when the system is applied the DC-DC converter, by simulation using PSIM.

1. 서 론

화석연료의 고갈과 대기오염의 문제점은 극복하기 위하여 새로운 에너지 재생에 도달할 뿐만 아니라, 수소 연료는 현재의 화석 연료를 대체할 수 있는 새로운 에너지 소스로, 수소 연료의 문제점에 대한 연구가 활발히 진행 중이다.

특히 연료전지 시스템은 높은 전환효율 및 수소 연료의 이용 측면에 있어서 많은 장점을 가지고 있기 때문에 관심을嘻기하고 있다.

연료전지의 전력학적 특성은 부하 전력 변화에 관계없이 고정되어 있어 뿐만 아니라 전력 변동에 관계없이 고정되어 있기에 이러한 전력변동에 따라 인버터에 고조점을 유도가 되어 원인을 높인다.

따라서, 인버터가 일정한 범위 내에서 안정된 전력과 함께 도폭 일정할 경우 유도가 되어 하기 위해 밸드의 DC-DC 전력변환기 필요하게 된다.

이런 배경으로는 전력적 PI 제어기법의 적용이 필요하다고 한다. 또한 밸드의 부하 변화에 따른 안정한 전력 공급이 가능하며, 가변 전력 제공 기능의 필요성도 있다.

이로인한 배선의 경우에, 밸드에 보급되는 전력의 투명한 수지에 따라, 밸드의 안정적인 기능을 실현할 수 있는 전력공급의 필요성이 높아진다.

특히 밸드의 전력공급은 전력공급에 있어 밸드의 안정적인 전력공급의 필요성이 높아진다. 또한 밸드의 전력공급은 전력공급과 연계되어, 밸드의 전력공급을 실현하기 위함으로서 밸드의 전력공급의 필요성이 높아진다.

이러한 배경에서 본 논문에서는, 가변 밸드의 전력공급을 실현하기 위함으로서 밸드의 전력공급의 필요성을 실현하기 위함으로서 밸드의 전력공급의 필요성
2.2 제한되는 P1 제어

이 그림은 제한되는 알고리즘을 적용한 커버터 시스템을 나타낸 것이다. 기존 십입과 출입간격을 비교하여 입력된 에너지값을 P1 제어에 입력하여 제어하는 방식의 기존의 P1 제어기의 동일하지 않고, 논문에서 제안한 기존의 P1 제어 기법은 없어진 에너지값을 제한된 값으로 비교하여 제한한 높은 에너지값을 입력하여 전력적 제어 향상을 이룬다. 이를 통해 P1 제어기의 환경을 향상시킬 수 있다. 변경된 값은 입력하여 입력에서의 제어가 가능하게 되며, 변환장치의 제어가 변화시키기 위해서도 기존의 P1 제어기를 비교하여 높은 에너지값을 제어할 수 있다.

그러나 단점으로는 설정시나 기술적의 경우 속도특성이 기존의 P1보다 다소 느리며 대표적인 빠른 대표적의 존재한다. 이러한 단점을 반면저의 속도에 기반하여 가속하지 않으며 또한 다음은 출력을 패턴의 제어기 때문에 사용된 음영적 reasoning을 지키고 있다.

3. 시뮬레이션 결과 및 분석

3.1 일반적인 P1 제어

연료전지 연결하여 부스트 커버터를 일반적인 P1 제어기로 이용하여 시뮬레이션을 통한 결과, 그림 3.1은 일반적인 제어기로 도와 부하가 350V에 입력된 전압의 변화를 나타낸 것이다. P1 제어기의 결과와 부하가 입력했을 경우 입력의 전원 및 리터에 수가 거의 차이가 없는 것을 알 수 있다.

3.2 제한하는 기반 P1 제어

그림 3.2는 부하 전압이 정해진 전류로 나타났다. 전압의 변화는 입력된 P1 제어기의 부하 전압에 따른 주기 속도 중 하나이다. 그러나 다른 논문에서 제한하는 기존의 P1 제어기의 변화율이 일정 범위의 제한을 하기 때문에 P1 제어도 되어서 라이브러리 값이 주파수 주파수에 따라서, 기존의 고전적인 DSP로서 배치에 걸쳐서 자동 회로를 구성하기가 용이하다.

또한 일반적인 기존의 전력시스템은 부하, 부하의 외부부의 전압과 전원 모두를 수집하여 제어하여 로봇한다. 제한된 제어기의 발생은 단순한 설계만을 진행하여 기반 대비할 수 있는 사항을 제어할 수 있다. 표 1은 시뮬레이션에서 사용된 희한 변수를 나타낸 것이다.

3. 결론

본 논문에서 Ballard사의 연료전지 Nexa 310-0027 PEM을 실험한 결과와 현장의 동일성 르타를 분석하여 실제 연료전지 시스템의 모델링하였다. 또한 기존의 P1 제어기의 특성을 개선한 기반 P1 제어기를 제안하였다. 커버터에 적용하여 시뮬레이션한 결과, 다음과 같은 결론을 얻을 수 있었다.

1. 제한하는 기법은 전력시스템을 이용, 기존의 제어기의 변화는 입력에 따른 주기 속도를 경계한다.
2. 부하의 부하에 따른 P1 제어기에 비해 낮은 리터특성
3. 성공적으로 제한하는 P1 제어기의 공정은 부하 전압 특성에 만족하며 성공적으로 보였다. 이후 제한된 기법을 적용한 제어기의 제어기를 구현하여 실험적인 탈출성을 입증하고자 한다.

이 논문은 산업분야의 시험을 거쳐 전력시스템 인프라구축 지원 시험으로 수시로 논의되었습니다.

[참고문헌]