Novel Recycling Technology of Ultra-fine Fibrous Materials

Song Ho Kim, Yong Wha Oh, Shin Young Lee

1Department of Fiber and Polymer Engineering, Hanyang University, Seoul, 138-712 Korea
2Department of Home Economics Education, Chung-Ang University, Seoul, 221 Korea
Email: nhklim@hanyang.ac.kr

Introduction
Ultra-fine fibers are spun by expensive fiber spinning technology using special spinners. Ultra-fine fibrous materials have attracted considerable attentions because of their potential applications as high performance waging cloths, water absorbents, acoustic absorbers, and mass transfer soaking good. However, production cost of ultra-fine fibers is 5 to 7 times higher than that of general textile materials [1]. Therefore, ultra-fine fibrous material waste and scrap should not be dumped and re-extracted to save natural resources. Accordingly, it is important to develop novel recycling technology [2-6].

The objective of this research is to develop cost effective recycling process to produce multi-functional ultra-fine fibrous materials from textile waste and scrap. It is expected that high performance and cost-effective textile products can be developed using recycled textile scraps, thereby realizing the application at acoustic absorbers and waging cloths.

Experimental
The textile fibers used for water absorption, oil absorption, and sound absorption measurements were prepared by mixing recycled textile scrap with 20% low melting polyester. These webs were thermally bonded at 5 mm, 10 mm, 15 mm, and 20 mm bonding plate.

As the case of textile immersed in water, the height of water absorbed was measured. Oil absorption was measured by the same method using petroleum. The capacity of sound absorption was measured by two-microphone impedance measurement tube (ASTM D2654) to calculate sound absorption coefficient. Air permeability (ASTM D737) was measured to estimate structural characteristics of acoustic absorbers.

Results and discussion
The effect of fiber diameter of general polyester web, direct spinning polyester ultra-fine fiber web, and recycled ultra-fine fiber web in water permeability was investigated. The thickness of all samples was fixed to 25 mm varying different weight and porosity. The variations of sound absorption for various fibers are shown in Fig. 1.

![Figure 1. Sound absorption coefficients for various fiber webs.](image)

The values of air permeability for general polyester non-woven and recycled ultra-fine fibers were estimated to be 220 and 17.6 cm³/sec, respectively. The air permeability value of recycled ultra-fine fiber was lower than that of general polyester non-woven material. From the above results, it can be deduced that the air permeability was decreased with decreasing the diameter of component fibers, leading to the improvement of the efficiency of sound absorption.

| Table 1. The results of water and oil absorption measurements |
|-------------|-------------|-------------|
| | Water | Oil |
| 5mm | 147.5% | 154.5% |
| 10mm | 234.2% | 341.4% |
| 15mm | 420.8% | 447.6% |
| 20mm | 593.0% | 447.9% |
| General polyester | 453.6% | 3.5% |

The results of water and oil absorption measurements are summarized in Table 1. The value of water absorption for recycled ultra-fine fiber, which was thermal-bonded at 15 mm interval, was estimated to be 420.8%. In addition, the oil absorption value of recycled textiles thermal-bonded at 15 and 20 mm intervals were approximately 447%.

This result suggests that recycled textiles exhibit higher water and oil absorption values than general waging cloths. The recycled textiles produced by novel recycling technology are expected that they have significant potential application in various industrial fields, as well as the advantage to solve the environmental problems.

Conclusions
The values of sound absorption for recycled ultra-fine fiber was higher than that of general polyester. Because of the efficiency of sound absorption for the recycled ultra-fine fiber increased with decreasing diameter of component fibers, which was attributed to the reduction of air permeability. The effect of the water and oil absorption of recycled ultra-fine fiber was observed superior than that of general polyester.

Based on the results of this research, it is expected that efficient oil absorption and water absorption can be achieved with waging cloth. And sound absorption capacity can be accomplished by incorporating materials, absorbent to the interior of building and sound assenting wall.

References

Acknowledgement
This research was supported by the 21C Frontier R &D Program, Resource Recycling R &D Center (Project No. M103L0010115-040501-01C30).