Thermosensitive Hydrogels Based on IPNs and Emulsion Blends of Poly(N-isopropylacrylamide) and Polyurethane

Sung-Man Cho, Byung-Kun Kim
Dept. of Polymer Science and Engineering, Pusan National University, Busan, Korea

Introduction
Thermally reversible hydrogels undergo dramatic volume changes to temperature change and have a number of applications in coating materials as well as in biomedical and agricultural industry [1]. Among them poly(N-isopropylacrylamide) (PNIPAAm) shows a lower critical solution temperature (LCST) at 32°C and its thermosensitivity has extensively been investigated in drug delivery system [2].

For specific application, mechanical properties of these gels, that is the mechanical properties at swollen state is generally poor and reinforcement is often desired. Following our earlier work [3], compression strength of polyacrylamide gel has been increased over 100% with 10% of polyurethane (PU) incorporation as IPNs.

In this paper, we prepared IPN-based and emulsion blend of PNIPAAm with PU hydrogels in order to overcome the shortcomings of a normal PNIPAAm hydrogel. These hydrogels have been tested for mechanical properties by universal testing machine. The temperature dependences of the swelling ratio of these PU-PNIPAAm hydrogels were also characterized to determine their thermo-responsive capability.

Experimental
Materials: Extra pure grades of 4,4'-dicyclohexylmethane disocyanate (HMDI), polytetramethylene glycol (PTMG, M₆=550), dimethyl butylm ino acid (DMB), dibutyltin dilaurate (DBTDL), 1,4-tetrahydroxide (1,4-TDI), and 2-hydroxy ethyl acrylate (HEA) were used to prepare VPIU. PNIPAAm was mixed with N-isopropylacrylamide (NIPAAm), N,N-methylenebisacrylamide (MBAAm), and potassium persulfate (KPS) before it was subjected to reaction.

Synthesis: HMDI, PTMG, DMB, 1,4-TDI, and DBTDL were first mixed and reacted at 80°C to obtain NCO-terminated prepolymer. Then HEA was added and reacted for 4 hrs to obtain vinyl terminated prepolymer (VIP). Dispersion of PU prepolymer was carried out by adding distilled water into VIP. After radical polymerization of VIP, PNIPAAm monomer, MBAAm, and KPS were added to the dispersion of PU. Then polymerization and crosslinking of the PNIPAAm monomer and crosslinker MBAAm were carried out at 25°C for 24h. Thereafter, a PNIPAAm structure, consisting of PU network and PNIPAAm network components, was formed. Emulsion blends were obtained by breaking networked PU dispersion, and PNIPAAm emulsion throughout emulsion polymerization.

Characterization: Number average diameter of dispersion was measured by light scattering method (AutoSizer, Malvern ICI).

To measure the equilibrium swelling ratio, samples were immersed in water at 20, 30, 35, 40, 50, and 60°C for fixed period of time. Equilibrium swelling ratio was defined as:

\[
\text{Equilibrium Swelling Ratio} = \frac{W_e - W_d}{W_d}
\]

where \(W_e\) is weight of sample in equilibrium with water and \(W_d\) the dried sample.

Compression tests of gels at their swollen state were performed using universal testing machine (Tinius Olsen 1003).

Results and discussion
Particle size. Figure 1 shows the variation of dispersion size with NIPAAm content measured at two different temperatures, that is above and below the LCST. Above the NIPAAm content increases, particle size increases at below the LCST. This indicates that NIPAAm monomers diffuse into the PU dispersion effectively. Moreover, particle size at 25°C is much bigger than that 50°C regardless of the NIPAAm composition although the difference is increased with increasing NIPAAm content.

Figure 1. Particle Size of IPNs Dispersion

Swelling properties. The temperature dependent equilibrium swelling of the dispersion cast films having various PU/NIPAAm compositions are given in Figure 2. Below the LCST, equilibrium swelling significantly increases with increasing NIPAAm content leading to a maximum increase of about three times for NIPAAm 50 as compared with homopolymer PU. Above LCST, equilibrium swelling is lower than the one which is constant with temperature and composition except for PU. This result showed that the swelling ability of hydrogels increased and phase transition becomes faster with increasing NIPAAm content.

Figure 2. Equilibrium Swelling Ratio of IPNs Cast Films

Compression properties. Compression properties such as modulus, strength and strain at failure for the PU-PNIPAAm IPNs are given in Figure 3. As the content of PU in IPN increase, the modulus monotonically increase and the strain at break monotonically decrease.

Figure 3. Compression Properties of PU-PNIPAAm IPNs

Conclusions
The difference of particle size between above and below the LCST indicates much higher thermosensitivity of PU-PNIPAAm hydrogels. Equilibrium swelling at room temperature increased dramatically with NIPAAm and it was over about three times with 50wt% NIPAAm. Mechanical properties were increased with increasing PU content. These results showed that IPN-based PNIPAAm hydrogels from PU and PNIPAAm networks improve mechanical properties without weakening the thermal sensitivity of the hydrogels.

References