한국형 틸팅차량의 열차제어단장치 조합시험에 관한 연구

이수길

한국철도기술연구원

The Study of Train Management System Combination Test for Korea Tiltling Vehicle

Su-Gil Lee

Korea Railroad Research Institute

Abstract - 기존 노선을 이용한 고속화 신기술 개발사업 과제를 수행하여 중장거리 및 도시간의 교통량을 위해 고속철도 철도차량을 개발하여 최고속도 180km/h의 속도로 운행할 수 있는 차량의 개발에 있어 핵심 전장품인 열차제어단장치를 국산화하여 수입대체효과 및 기술개발에 기여하고 있다.

1. 서 론

철도는 안전성, 대량수송, 고속, 에너지절약, 배출성과 환경문제에 대해 장점을 가지는 대중교통수단으로써 각국의 초미의 관심사로 여겨지고 있다. 특히 전기철도는 근일 가중 hạng량을 통합수단으로 부각되어 대량, 고속수송이라는 점도 고유의 장점을 우월없이 발휘하고 있으며, 프랑스, 독일, 일본 등의 국가를 중심으로 전기철도의 고속화, 경량화, 에너지절약 등에 대한 연구가 정점적으론 추진되게 되었다.

현재 철도청 철도기술연구개발사업의 일환으로 개발되고 있는 TTX 기존선 고속 틸팅열차(Tilting Train eXpress EMU for Conventional Railroad)의 시험편성은 2유닛-6량으로 구성하였다. 각 유닛은 3량으로 독립된 추진시스템을 설계하고 있다. 한편 확대편성은 3유닛-9량 및 4유닛-12량으로 구성된다. 1유닛는 3량으로 각 구동차 2량, 부수차 1량의 2M1T 구조로써 전체에 산업용 선진EMU 차량과 시스템을 구성하는 기술이다. 그림1은 개발차량의 편성구성도이다. MCP 차량은 동력차 및 차량제어 및 완도그래프 구성을 차량이며, M 차량은 동력차이며 T 차량은 객차이다.

도표 1. TTX 차량 편성도

열차추진성능은 시스템 요구사항을 만족해야 하며, 최고운행속도 180km/h의 주행이 가능해야하고, 최고운행속도에서 0.07m/s²이상의 여유가속도를 확보해야 하며, 단 7%이상의 오름 구간을 주행할 수 있어야 한다. 이를 위해 충분한 열차 추진력을 확보할 수 있는 전방진동기성능을 갖추 수도 있도록 시스템을 설계해야 한다.

1) 열차속도: 최고운행속도: 180 km/h
 - 설계최고속도: 200 km/h

2) 편성: - 시행편성(6량): MCP+M+T1+T2+M+MCp
 - 확대편성(9량): MCP+M+T1+M+T1+T2+M+MCp
 여기서 MCP: 제어구동차 (Motorized Control Car with Tilting Pantograph)
 M: 구동차 (Motorized Car)
 T1, T2: 부수차(Trailer)

3) 열차중량(W2): 기본편성 344톤 이하
 9량 확대편성 516톤 이하

4) 추행능력: 상행과 속도 0.07m/s 이상의 여유가속도를 가지거나 또는 7% 이상의 구배를 주행할 수 있어야 한다.

5) 차량경: 신차량 860 mm
 신형차량 820 mm(완행모)

6) 주행저항

주행저항을 산출하기 위하여 TTX 열차와 다큐차량 주행저항은 차량시스템과 전기장치를 계산하여 주행저항을 산출하되 다음과 같이 철도청 다큐차량시스템을 사용하였다.

$R(Kg) = A + B \times V + C \times V^2$

여기에 A : 25, B : 0.0186, C :

$= \frac{(0.0269+0.0079(n-1))}{V^2}$, W : W(200m load, Kg), V : 열차속도(Km/h), n : 차량 수

주행저항도는 개발되는 기존선 고속 틸팅열차의 추진 및 제동 시스템의 연구를 위하여 사용하여 연구를 수행하고 TTX 차량의 시험차를 제작하여 시험진행을 통하여 새로운 주행저항계를 정의할 것이다.

2. 본 론

2.1 열차제어단장치

열차제어단장지는 차량에 탑재된 주요 기기의 동작 상태를 항상 감시하고, 차내 장치의 정확성을 효율적으로 개발 및 실행 시 고성능 기록과 모니터링을 통해서 실시간으로 고장내용 안내를 운전차에 제공하여야한다.

열차제어단장지는 차량의 TC Car에 Train Computer, Car Computer1(C1), Display Unit(DSP)가 탑재되어, 중간차에는 Car Computer2가 탑재되어, 차량 간 통신은 10M bps E-NET으로 연결하여 차량간 정보를 전송하며 실시간의 정보를 TC에 전달하여 운행중 고장 및 접수의 효율성을 향상시킨다. 운전사가 열차의 운행조건을 평가하고 운행에 필요한 조치를 취할 수 있도록 운행지원을 하며 승객들에게 편리한 서비스를 제공하며, 장비의 유지보수와 점검을 신속하게 할 수 있도록, 운전사 지원, 감사지원, 고장 원인 해석 지원 등의 기능을 실현한다. 또, MONITOR 표시기는 TFT color LCD 방식의 DISPLAY로 압력식 TOUCH PANEL을 사용하고 있다. 8Mbyte의 IC CARD READER/WRITER가
내장되어 있어 차량 DATA를 지상으로 전달하는 역할\n인 IC CARD에 기록된다.\n각 Mode간의 전환은 그림 2에 표시한다.

그림 2. Mode전환도

전원투입시에는 TCMS는 통상모드로 된다. 이후, 통상Mode ↔ 검수지원Mode 및 통상Mode ↔ 자기진단\nMode는 그때의 표시기로부터의 Key입력에 의하는 것\n으로 한다. 또한, 열차의 주행중에는 통상Mode만이 선택\n될 수 있도록한다. 이 때문에 열차의 운행중에 통상Mode\n로부터 다른Mode로 전환 할 수 없도록 하여야한다. 이\n조 절차 간단한 HCR ON에 의해 행한다. HCR OFF의 경우\n는 검수지원Mode 또는 자기진단Mode로는 전환 할 수\n없는 것으로 한다. 한편, 검수지원Mode 또는 자기진단\nMode로부터 통상모드로의 전환조건은 DSP로부터의\nkey입력으로 하고 그외에는 설정하지 않는다.\n시스템 구성도를 다음 그림에 나타내었다. 본 시스템 구\n성의 특징은 다음과 같다.
- TC (Train Computer)가 2대, CC (Card Computer)가 6\n대, DSP (Display Unit)가 2대\n- 화면 표시에 대해서는 선두(HCR ON)측, 후비(TCR\nON)측에 같이 표시하는 것으로 한다. 양 운전대에 있어\n서는 각각 독립하여 화면 선택이 가능한 것으로 한다.\n- 후부 운전대의 화면은 기본적으로는 [표시]만 하고\n기능확인, 재시작, 설정기, 입력, 지시 출력, 등,\nSystem의 동작에 영향을 주는 조작은 입력 할 수 없다.\n주진용으로 상의 진공은 1초차 TC로 하고, Backup을 0호\n차 TC로 한다.

그림 3. TMS 인터페이스 구성도

2.2 시스템 백업 기능
2.2.1 TC Backup기능
본 System에서는 양 TC차에 있어서 TC를 CC1이\nBackup 하는 형태로 2중계를 구성하고 있다. Backup할\n수 있는 기능은 기능처짐을 제외한 통상기능으로 하고\n통상기능을 Backup 하기 위해서는 필요한 입출력을 TC\n와 CC1의 양 장치에 사용한다. TC에서 CC1으로의 절환\n은 자동적으로 행해진다. 이 절환 처리는 아래의 조건에\n따른 것으로 한다.
- TC ↔ CC1간에는 상시 상호 동작감시를 실시한다.\n- 동작감시는 Flag 감시방식으로 한다.\nFlag 감시방식으로는 상대가 Flag를 ON/OFF(반전)한 것\n을 확인한 시점에서 자기의 Flag를 ON/OFF(반전)하는\n방식을 말한다. 결국 초기상태에서 자신/상대의 Flag를\n0으로 하고 TC, Primary TC로 하면 먼저, TC가 Flag\n를 1으로 하고 이를 감시하고 있던 CC1이 자신의 Flag를 1\n로 한다. 이것을 받은 TC는 Flag를 0으로 한다. 이것에\n이해 위해 이때는 CC1이 Flag를 0으로 한다. 개개기와\nTC가 Flag를 1로 한다. 이 동작을 상호 계속해 가는 방\n식이다.
- Flag를 주고받는 것은 입출력(DI/O)로 사용한다.

그림 4. Flag 감시방식

- Flag를 주고받는 것은 입출력(DI/O)로 사용한다.
- 자진이 Flag를 ON/OFF(반전)도 불구하고 상대측이\nFlag의 ON/OFF를 하지 않을 경우에는 상대측 기기\n가 고장난 것으로 판단한다. 더욱이 이 판단시간은\n200ms로 한다.
- CC1이 TC의 고장같이 짜한 경우에는 그 기능을 대\n항한다.
- 접관처리는 TC로부터 CC1로의 절환으로 한다.
CC1로부터 TC로의 절환은 금지한다. 또한, CC1에 의\n한 TC의 Backup처리는 외부에의 출력을(DO출력, Train\nBUS로의 출력, 각기자의 진송출력)을 제외하고 상시\n실험하고 있는 것으로 한다. S/W에서는 상시출력을하\n끼는 것을 실시하고, H/W적으로 이동을 금지하는 방법을\n취한다. 결국, 입력처리(전송에 의한 입력을 포함하는\n상시 실험)하는 것으로서 TC Down식의 CC로의 절\n환후 CC1은 초기화 처리 등의 기존이 생기지 않고 이들\n동작이 할 수 있는 것으로 한다. 본 TC에 이상이 발\n생하고 CC1으로의 절환을 하기까지의 시간(판단 사\n간 200ms+Relay 동작 시간 약 20ms)은 임시적으로\nTMS의 동작이 정지하는 것으로 된다.

2.3 시스템간 인터페이스 사양
통신성상 인터페이스 정원은 VVVF 정원, SIV 정원,\nBrake 정원(BOU), PSS정원, ATP 정원, TE Com,\nHVAC 등 이 있으며 이 장치들은 다음과 같은 인터페이\n스 사양을 가진다.
프로토콜 사양
- RS-485, Twisted pair shield wire(일 대 다중), 전송\n속도: 9600 bps 19600 bps, 시작비트: 1비트, 캐릭터\n비트 8비트, 패리티비: 1비트(짝수 패리티), 정지비트:\n1비트
- CAN 통신, Twisted pair shield wire(일 대 다중), 전
송속도 : 9600 bps ~ 38600 bps, 프레임의 시작 (SOF : Start Of Frame) 필드 ; 디포트 "0", 종계 필드 (Arbitration Field) : 11 비트, 제어 필드 (Control Field) : 6 비트, 데이터 필드 (Data Field) : 0 ~ 8 Byte, CRC 필드 (CRC : Cyclic Redundancy Check) : 17 비트, ACK 필드 (ACKnowledge Field) : 2 비트, 프레임 종료 필드 (EOF : End Of Frame Filed) : 7 비트

표 1 TMS 시스템 통신사항

기능분석과 System개발을 위해서 자료수집과 Car computer내부의 통신 Board면산 및 제어 Board개발의

<table>
<thead>
<tr>
<th>전기적 I/F</th>
<th>BaudRate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>RS-485</td>
</tr>
<tr>
<td>SIV</td>
<td>RS-485</td>
</tr>
<tr>
<td>BOU</td>
<td>RS-485</td>
</tr>
<tr>
<td>CTE</td>
<td>CAN-BUS</td>
</tr>
<tr>
<td>C/I</td>
<td>RS-485</td>
</tr>
<tr>
<td>PSS</td>
<td>RS-485</td>
</tr>
<tr>
<td>HVAC</td>
<td>RS-485</td>
</tr>
<tr>
<td>TTP</td>
<td>RS-485</td>
</tr>
</tbody>
</table>

중심인 Hardware 및 Software작성을 위한 System기능을 확장하는 작업과 통신 Protocol을 확정하며 기능별 처리순서를 기록하고 Software Coding작업을 수행 가능하도록 분할하여 설계되었다.

그림 5. TMS 시험용 시뮬레이터 구성

그림 6. PSS 시험 및 통신에 관한 Level 측정

그림 5는 향후 TMS 개발이 완성된 후 현장에 취업할 기간에 차량을 모의하여 TMS 시스템의 상태를 체크하는 TMS 시험용 시뮬레이터를 구성하고 있다. 그림 6과 7은 모의시험장에서 조합시험을 실시하고 있으며 그 결과를 보여주고 있다. 테링차량용 TMS 시스템은 현재 시뮬레이터를 이용한 조합시험을 통해 현장에 정착하기 전에 계속해서 시험을 수행하고 있다.

3. 결론 및 향후연구계획

기준노선을 이용한 고속화 선진기술 개발사업 결과를 수행하여 중분거리 및 도시간의 교통체소를 위해 고속도로 차량을 개발하여 최고속도 180km/h의 속도로 운행할 수 있는 일차제어회로장치 설계에 관한 연구를 수행하였다. 설계를 위해 System 엔지니어링에서 계산된 각종 기능을 토대로 Interface차로를 작성하고 제어하여는 빌딩과 System관계를 정리하고 각 기능간의 제어진단 향상을 설정하였으며, 각 장치와 관련한 Interface 및 기 타장치의 정보를 제어 진단하는 Protocol을 설정하였다. 또한 VME board의 적용으로 확장의 편리성을 도모한 다. 또한 Car computer와 Train computer의 Board와 관련하여 Core기구와 Board를 공유하여 설계하며 System의 공용화를 도모하며 Car computer간의 통신기술을 강화하여 고속통신으로 장비의 정보가 Network System의 신속한 제어와 진단정보를 통하여 기기를 간의 정보의 정확성 및 신속성을 확보하고자 한다. 본 논문에서는 TMS 조합시험을 통해 TMS 시스템이 현장에 정착하기 전에 상당한 문제를 해결하여 주행시험에서는 보다 안정된 시스템을 구축할 수 있을 것으로 판단된다.

[참고 문헌]