

1. 서 론

이러한 상변화 방식에 의한 관측에 이용되는 기록 매체가 갖추어야 할 조건으로는 매체의 기록량도가 우수하여야 하며, 고 분해능과 높은 신호대음비, 낮은 열확산도를 갖추고, 긴 수명, 빠른 결정화 속도가 가라앉아야 하며, 비교적 높은 가속도 및 소거 횟수 등이 요구된다. [6-8]

2. 실험

본 논문에서는 Ge1Se2Te2 상변태 물질을 선택하였으며, 그 물리적 특성 및 전기적 특성을 참고문헌 [9]의 내용을 기초로 하였다. 소자 구조는 그림 1(a)와 같이 제작하였다. 하부 전극과 하부 전극은 Au를 사용하여 각각 1000Å, 3000Å으로 증착하였고, 니켈라인드 물질은 비교적 펄스를 위하여 Ge0.7Se0.3Te와 Ge0.7Sb0.3Te3 물질은 각각 사용하여 2000Å를 쌓았다고 한다. Sample의 측정은 그림 1(b)와 같이 배열하여 He-Ne Laser와 DPSS Laser를 이용하고 Digital Multimeter를 사용하여 각각의 변화를 관찰하였다.

![Diagram](attachment:diagram.png)

(1) 1. 구조도 (b) 측정 배치도
3. 결과 및 검토

그림 2와 3은 레이저 조사 시간에 따른 저장 변화를 나타내는 그래프이다.

![그래프1](image1)

그림 2. Ge$_2$Sb$_2$Te$_5$ 박막에서 레이저 조사 시간에 따른 저장 변화.

![그래프2](image2)

그림 3. Ge$_5$Se$_3$Te$_2$ 박막에서 레이저 조사 시간에 따른 저장 변화.

그림 2는 기존의 상변화 물질인 Ge$_2$Sb$_2$Te$_5$ 물질을 사용하여 제작한 sample에 He-Ne Laser(632.8nm)와 DPSS(Diode Pumped Solid State) Laser(532nm)를 이용하여 광을 조사한 후 시간에 따른 저장 변화를 나타낸 것이다. 그림에서 보는 것과 같이 파장이 짧은 DPSS Laser를 사용한 것에서 더 빠른 저장 변화가 나타났지만, 파장이 긴 He-Ne Laser에서 저장 변화가 더 큰 값을 확인할 수 있다. 이것은 파장이 짧은 DPSS Laser에서 빠른 내부 구조 변화에 의한 빠른 저장 변화를 가져왔고, 파장이 상대적으로 긴 He-Ne Laser에서 박막 내부에 더 많은 구조 변화를 일으켜 DPSS Laser보다 더 큰 저장 변화를 얻을 수 있다.

그림 3은 Ge$_5$Se$_3$Te$_2$ 물질을 그림 2의 Ge$_2$Sb$_2$Te$_5$ 물질과 같이 측정한 결과이다. 그림에서 보는 것과 같이 Ge$_5$Se$_3$Te$_2$ 물질도 Laser에 따른 시간 변화에 저장 변화는 Ge$_2$Sb$_2$Te$_5$ 물질보다 저장 변화 시간이 단축 될 것을 확인 할 수 있다. 이것은 광에 민감한 Se 물질의 흔개에 의한 광 감도의 향가에 의한 것으로 사료된다.

4. 결론

본 논문에서는 기존의 optical disk에서 사용되어 오던 Ge-Sb-Te 물질보다 고밀도, 고성능을 갖는 새로운 물질인 Ge-Se-Te 물질을 이용하여 optical disk에 응용 할 수 있는지에 대하여 실험한 결과, Ge-Se-Te 물질의 저장 변화 시간이 Ge-Sb-Te 물질보다 빠른 것을 확인 할 수 있었다. 하지만, 저장 변화 비속도는 Ge-Sb-Te 물질이 좀 더 우수한 것으로 나타났다.

본 실험을 통하여 optical disk의 문제점 중 하나인 느린 결정화 속도를 개선할 수 있는 가능성을 확인 하였다. 또한, Ge-Se-Te 물질의 조성 변화 및 내부 구조의 동적 규명 등의 실험을 통하여 고밀도, 고성능의 optical disk로서의 응용이 가능할 것으로 사료된다.

감사의 글

This research was supported by the MIC(Ministry of Information and Communication), Korea, under the ITRC(Information Technology Research Center) support program supervised by the IITAA(Institute of Information Technology Assessment)(IITA-2005-C1090-0502-0038)

참고 문헌