Fabrication of carbon nanotube gas sensor using a diaphragm structure

Sung-Woon Kim*, Chun-Jae Han**, Woo-Sung Cho***, Byeong-Kwon Ju***, Hyun-Seob Cho** and Young-Choo Kim **
*Dept of Electronic & Electrical & Computer, University of Seoul
**Dept of Digital Broadcasting & Electronics Engineering, Chungwoon University
***Dept of Electronic Engineering, Korea University

Abstract
The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide (NO$_2$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to NO$_2$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of 130°C.

Key word : Gas sensor (가스 센서), Carbon nanotube (CNT, 탄소나노튜브), Nitrogen dioxide (NO$_2$, 이산화질소), Recovery (회복).

1. 서론

서 알려진 가스 센서로써 탄소나노튜브의 응용 가능 성은 하나의 단일벽 탄소나노튜브와 단일벽 탄소나
노튜브로 이루어진 메트 형태로 나누어져있다[7]. 하
나의 단일벽 탄소나노튜브를 소자에 적응하기 위한
제작 공정에는 여러음이 많고, 탄소나노튜브의 특성
에 크게 영향을 받아 제조성이 멀어지기 때문에, 단
일 탄소나노튜브로의 없애는 영향을 받지 않는 탄소나
노튜브로 이루어진 메트 형태에 대한 관심이 보이고
있다.

이에 본 논문에서는 센서의 품질적 특성을 개선시
키기 위해, 다이아프램[16,17] 위에 힌스, 접촉 전극
생성 및 화학적증착작용[18]으로 통합된 구조와 탄
소나노튜브를 제작하였다.

그림 1. (a) 탄소나노튜브 가스 센서의 모식도
(b) 패키징된 가스 센서

2. 실험방법

2.1 다이아프램이 포함된 구조체 제작

면적이 3x3mm²이고 두께가 450μm인 실리콘 기판
은 젤먼트를 식각하여 면적이 1.5x1.5mm²이고 두께가
20μm인 다이아프램을 형성하였다. 다이아프램 면적
안에 크롬(Cr) 힌스, 접촉 전극과 면적이 1.05x1.2mm²인
탄소나노튜브 감지막이 위치한다. 그
림 1은 센서의 모식도와 패키징된 실제 센서 사진을
보여주고 있다. 센서 제작 공정은 그림 2와 같다.
(1) 양면 가공된 p형 웨이어에 열산화 공정으로
SiO₂를 1μm 성장시키고, 그 위에 저압 화학적증
착법(LPCVD, Low Pressure Chemical Vapor Deposition)으로 Si₃N₄를 증착하였다[그림
2의 (b)].
(2) 힌스 위에 젤먼트의 평판화를 위해서 SiO₂를 폴
라즈 마하 화기 상 증착법(PECVD, Plasma-Enhanced Chemical Vapor Deposition)
으로 증착하고, 반응성 이온 식각(RIE,Reaction
Ion Etching)공정으로 힌스 패턴을 형성하였다
[그림 2의 (c)].
(3) 형성된 SiO₂ 박막 위에 RF-스페르리져법으로 크
롬(Cr)을 증착하고 lift-off 공정으로 저항성 크
롬(Cr) 힌스를 형성하였다[그림 2의 (d)].
(4) 힌스와 전극 및 탄소나노튜브 감지막의 전기적
접합을 위해 SiO₂를 플라즈마 화학적증착법
(PECVD)으로 증착하고, 페턴을 형성 후 반응성
이온 식각으로 SiO₂ 절연막을 형성하였다[그림
2의 (e)].

그림 2. 탄소나노튜브 가스 센서 제작 공정

(5) 축대 급속 코발트(Co)는 RF-스페르리져법으로
8nm 증착하고, lift-off 공정으로 형성하였다[그
림 2의 (f)].
(6) 크롬(Cr) 전극은 RF-스페르리져법으로 증착하고,
lift-off 공정으로 형성하였다[그림 2의 (g)].
(7) 힌스 페터면에 CF₄ 가스를 이용한 반응성 이온
식각 공정으로 실리콘을 식각하기 위한 Si₃N₄
식각층을 형성한 후에, 식각액인 수산화알 패름
(KOH)을 사용하여 두께 20μm의 다이아프램을
형성하였다[그림 2의 (h)].
(8) 최종적으로, 탄소나노튜브 감지막은 일 화학적증
착법(PECVD)에 의해서 형성한다[그림 2의 (i)]. 일
화학적증착법은 성수분이나 원료가 다양하고,
고순도 물질을 형성하기에 적합하며, 비세구조를
제어할 수 있고, 대맥적, 선택적 성장이 가능하
여 복잡하게 사용되고 있는 합성법이다. 아르곤
(Ar)/수소(H₂)분위기 하에 아세틸렌(C₂H₂)과 촉

- 224 -
메 금속(Cobalt)을 이용하여 합성하였다. 제작된 구조물을 열 화학기상증착장치의 반응로 안쪽에 석영관 위에 올려놓고 10⁻³torr 진공을 형성시킨 후에 헬로겐 램프에 의해 10분 동안 빠르게 750℃까지 상승시켰다. 이 과정 동안, 촉매 금속의 표면을 활성화하고, 반응로 안에 잔존 가스에 의한 촉매 금속과 전극의 산화를 막기 위해서 반응로 내부를 수소 분위기로 형성시켰다. 합성하는 동안에, 반응료의 총 압력은 20torr, Hydrocarbon 원료인 아세틸렌(C₂H₂)가스의 유량은 5sccm이고, 암모니아(NH₃)가스의 유량은 80sccm으로 일정하게 유지하였다. 탄소나노튜브 합성 후에, 반응기는 산소에 노출할 때까지 수소와 아르곤을 혼합하여 계속해서 주입하였다.

3. 결과 및 고찰

두 개의 평행하게 배열된 전극 사이에 포토사이그레프 공정에 의해서 배열된 빈은 코발트 촉매층 위에 선택적 수직 성장한 탄소나노튜브 감지막을 형성시켰다.

![그림 3. 제작된 센서의 FE-SEM 사진](image)
(a) 센서 표면 (b) 센서 단면 (c) 탄소나노튜브 감지막 단면 (d) 탄소나노튜브 감지막 표면

4. 결론

탄소나노튜브 가스 센서는 다이아프램 위에 허터, 접촉 전극형, 절연막을 포함하는 동일 구조를 제작한 후, 열 화학기상증착법으로 합성된 탄소나노튜브로 이루어진 감지막을 형성하여 구현하였다.

참고문헌

