서포트 추정을 이용한 빈곤 이미지 사양 기반 타원형 물체 복원 기법

고 김준
이경우

Fast Elliptic Object Reconstruction from Projections by Support Estimation
Kyeongjun Ko
Jungwoo Lee

Abstract - We present a fast reconstruction technique for elliptic objects, which can be applied to real-time computer tomography (CT) for simple geometric objects. It will be shown that only 3 projections are needed to reconstruct an ellipse. A piecewise quadratic model is also proposed for more efficient Kalman filter based support estimation, which is used for the fast reconstruction technique. The performance of the piecewise quadratic model is compared with that of the existing piecewise linear model. Simulation results for the fast reconstruction are also presented.

1. 서 론

CT는 의학분야에서 중요한 영향을 끼쳤다. CT는 다양한 사양 각도에 대해 이미지 사양으로부터 원상을 복구한다. 일반적인 CT의 이론적인 해석은 이차원의 직교 변환에 근거한다. convolutional back projection (CBP)은 레이스에 적합하고 복잡한 기계적인 이차원 부위 변환의 성능을 이용한 방법의 도구로 제공한다. 이 방법은 레이스에서의 산업 테스터가 아닌 용량에 적합할 수 있도록 넓은 복잡도가 가진다. 또한, 서포트 추정에 사용하는 부분적 정보 모델을 이용한 필터 지능은 제한된다. 본 과학 방법론은 현재 제한이자 [4].

이는 논문에서는 서포트에 있어서의 지능적 사양 정보를 이용하여 타원체의 직교적인 성능에 관한 방법에 대해 연구한다. 이 방법은 레이스에서의 산업 테스터가 아닌 용량을 갖춘 복잡도가 가진다. 또한, 서포트 추정에 사용하는 부분적 정보 모델을 이용한 필터 지능은 제한된다. 본 과학 방법론은 현재 제한이자 [4].

2. 본 론

2.1 Kalman 필터링을 이용한 State 공간 모델

\[
\phi(z) = \alpha f\sigma^2(i-k) + w(i)
\]

\[
y(i) = h^T z(i) + v(i)
\]

\[\Phi = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \]

\[\Phi = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \]

\[x(i) = x(i-1) + K(i)y(i)\]

\[y(i) = y(i) - h^T (x(i-1))\]

\[\gamma(i) = y(i) - h^T (x(i-1))\]

\[x(i+1) = x(i) + P(i)\]

\[P(i+1) = P(i) + \Phi(i)P(i)\]

\[G(i) = \Phi(i)P(i)\]

\[F(i) = K(i)G(i) + \Phi(i)\]

\[l(i) = \frac{P(i)k(i)^2}{P(i)k(i)^2} \]

\[d(i) = \frac{C(i)k(i)}{V(i)} \]

\[C(i) = \sum_{i=1}^{n} \frac{C(i)k(i)G(i)}{V(i)}\]

\[d(i) = \sum_{i=1}^{n} \frac{C(i)k(i)G(i)}{V(i)}\]
(16)

\[\hat{k}(i) = \arg \max_{k} w(i,k) \]

여기서 \(w(i,k) = |s_{i} - k|^{2} \)이고 \(s_{i} \)는 음직이는 편도우의 사이즈이 다. 이 점을 경계점 때, \(\hat{l}, \hat{k}(\hat{l}) \) > \(\epsilon \)이면 점을 점시되어 그것이 아닌 경우 폭이 없고 선언한다. \(\epsilon \)는 ML 추정이 최우선이 아닌 경우 정의되었기 때문에 [7], GLR 방법의 임의한 예를 추정인 GLRLM을 사용할 수 있다. A가 크면 민감도가 커지고 추정 범위가 더 넓어지지만 A가 작으면 그 반대가 된다.

2.3 직접적인 타원체의 복구

이번 섹션에서는, 서포트 추정으므로부터 타원 블렌드는 개산함으로 타 원체의 직접적인 복구를 말한다. 타원의 시각적인 블렌드는 CBR 방법 없이 직접적으로 구할 수 있다. 이론 근거를 이용하면 타원체를 구상하는 데에 사용 자료의 개수가 조금도 필요하지 않기 때문에 심간 CT가 가능해 질 수 있다.

재도 일도가 상수라고 가정하자, 일반적인 타원은 다음과 같이 표현되어 진다.

\[x = c_{1} + A \cos \phi \]
\[y = c_{2} + B \sin \phi \]

(17), (18)에서는 5개의 블렌드를 가진다. \(c_{1}, c_{2}, A, B, \phi \) 블렌드 서포트 값들은 하나의 사영으로부터을 수 없기 때문에 블렌드 구하기 위해서는 적어도 3개의 사영이 필요하다. \(\hat{\phi}, \hat{\phi_{d}} = \pi / 2, \hat{\phi} \neq \hat{\phi_{d}} \neq \hat{\phi_{d}} \)이라고 가정하고 (19), (20)를 정리하라.

\[z_{i} = z_{i}^{t} + z_{i}^{d} \]
\[w_{i} = w_{i}^{t} - w_{i}^{d} \]

여기서 \(z_{i}^{t} \)는 \(z_{i} \)의 오른쪽 서포트이고 \(z_{i}^{d} \)는 \(z_{i} \)의 왼쪽 서포트이다. 그러므로 (21), (22)의 식은 성립한다.

\[c_{1} = z_{1} \]
\[c_{2} = z_{2} \]
\[A = w_{1} \]
\[B = w_{2} \]

\(\theta_{i} \) 값을 통해서 풀고, (23)의 식이 만족한다.

\[\beta = \arcsin \left(\frac{w_{2} - w_{2}^{d}}{w_{1} - w_{1}^{d}} \right) \]

(24) 이것은 타원의 5개의 블렌드를 결정하기 위해서 적어도 3개의 사영이 필요하다는 것을 보여준다. 또한 직접적인 복구 방법은 이론의 일도가 아니라 오직 점의 모양만 의존하는 것을 알 수 있다.

2.4 실정 결과

실험에서 두개의 타원 경계선을 가지는 복의 이미지 사본을 고려한다. 두 개의 서로 겹치지 않는 동일 타원은 두 개의 점을 가진다. 타원의 사이즈와 위치는 추정되지만, 이는 가정이 되어 타원의 정부 위치와 관리한 문제를 타원 결정의 경우가 아니다. 타원이 겹치지 않아야 한다. 타원은 서로 겹치지 않으므로 각각의 기여도가 1이다. X-ray 경로 크기에 결정하는 데는 일반 타원과 2, 3, 4각의 타원과 1이다. X-ray 경로 이론적 블렌드는 일반 사영 방법과 설계에 듯 수 있는 것들이다. 노이즈 분산은 \(\sigma^{2} = 10^{-6} \)이다. 싱글의 가능도가 100이고 편도우 사이즈 \(\lambda = 20 \)이다. 초기 예측 분산은 \(P_{0} = \sigma^{2}, P_{0} = \lambda_{0}^{2} / \lambda_{0}^{2} \)이다.

그림 2는 두개의 타원 사진에서부서 복사 복사 모델을 사용한 결과의 결과이다. 추정 예측에 비해 타원의 경우 0.008이고 반복 타원에서는 0.012이므로 추정된 결과는 정확한 형태와 비교되어 있다. 추정된 결과는 표준진의 길이를 가진다. 그림 3은 추정이 제한된 부분적 점 경계 모델을 사용 한다. 추정 예측에 비해 타원에서는 0.04이고 반복 타원에서는 0.04이므로, 그 결과는 우리가 제한된 부분적 점 경계의 추정 예측이 부분적 경계 싱글의 추정 예측보다 상당히 적절한 것을 알 수 있다.