E형 적층패치를 이용한 4세대 이동통신 AccessPoint용 광대역 안테나 설계 및 제작

윤현수* · 최병호* · 목포해양대학교

Hyun-Soo Yoon* · Byoung-Ha Choi* · Mokpo National Maritime University

E-mail : super_gain@mmu.ac.kr, antenna@mmu.ac.kr

요 약

ABSTRACT

In this paper, Wideband antenna using E-shaped stacked patches has been designed and fabricated for 4th generation mobile communication(IMT-Advanced) AccessPoint application. E-shaped patch was miniature and broad band by made the movement route of current long. And inductive of coaxial probe compensates capacitive by slot. Therefore we fabricated to improve the bandwidth of proposed antenna. The E-shaped single patch antenna has an impedance bandwidth of about 13%(510[MHz]). By adding a second patch at the top of the first patch a bandwidth of 56%(2060[MHz]). The final fabricated antenna could have a good return loss(Return loss ≤-10dB) and a high gain(over 9.6dBi) at the range of 3.23 5.29 [GHz].

Keyword

IMT-Advanced(4G), E-shaped Patch, Slot Antenna, Wideband Antenna

1. 서 론

4G란 4th Generation mobile communication의 약어로써, 현재 사용중인 IMT-2000, HSUPA보다 한 단계 앞선 기술이다. 4G 서비스는 (IMT-Advanced) 고속 이동 중에 100Mbps, 정지 및 저속 이동 중에 1Gbps까지 데이터 통신이 가능하다.

국제전기통신연합(ITU : International Telecommunication Union) 산하, 전파규칙 개정등의 업무를 수행하는 세계전파통신회의(WRC-07)에서 4세대 이동통신용 주파수 분배를 논하는 연구의제(Agenda 1.4)를 다루고, 4세대 이동통신용 주파수 분배를 결정하기로 하였다. 410 430, 450 470, 470 806/862, 2300 2400, 2700 2900, 3400 4200, 4400 4990[MHz]의 7개 대역이 후보로 결정되었다. 이 중 3개 대역을 사용하기로 하였다. 이에 대한 주파수 소요량은 연구결과 2020년까지는 IMT(IMT-2000 + IMT-Advanced) 용도로 총 1280 ~ 1720MHz 대
역폭이 필요한 것으로 예측되지만, 이중에서 도 3400 ~ 4200MHz 대역이 IMT-Advanced용 주파수로 선정될 가능성이 매우 높다. 이에 대응하여 이 주파수대역을 수용할 수 있는 안테나의 개발이 반드시 필요하게 되었다.

본 논문에서는 안테나 설계에 사용되는 마이크로스트립 구조는 밀도가 높아며 비교적 저가에 소형화, 첨강으로 대량 생산이 용이하며 제작이 쉽다는 장점이 있으나, 낮은 효율과 히드역 특성을 가지고 있어 광범위한 활용에 많은 제약을 수반하고 있다. 낮은 효율과 히드역 특성은 개선하기 위한 다양한 방법들이 연구되었는데, 기존의 방식을 이용하는 방법, 다층구조를 이용하는 방법, 공기 층을 이용하는 방법, 개구 결합에 의한 방법, 유전체 기판의 두께를 증가시키는 방법, 캐피터와 리액턴스, 임피던스를 변환하는 방법 등이 제안되어 왔다[2-7].

본 논문에서는 실험에서 주로 사용하여 비교적 크기와 제한을 받지 않는 AP(ACCESS-POINT)용 고효율 안테나를 설계 및 제작하였다. 안테나의 효율과 대역폭을 개선하기 위하여 접지면과 방사 패치 사이의 간격을 유전율이 낮은 공기층을 이용하였으며, 패치의 길이와 Slot에 의한 2차 공간을 유도하여 이중 공간에 의한 광대역화를 구현하였다. 하지만 4세대 이동통신용 주파수 소요량을 만족하지 못해 더 넓은 대역폭을 얻기 위하여 적층구조를 사용하였다. 긴장 병설은 마이크로스트립 선로에 의한 불필요방사파를 줄이고 보다 넓은 대역폭을 얻기 위하여 동축프로브 긴장 방식을 적용하였다.

II. E-shaped 안테나의 구조 및 설계

일반적으로 마이크로스트립 안테나의 방사소자 길이는 공기장의 1 ~ 2 배 정도가 되도록 설계한다. 이에 패치의 폭 안테나의 공기 길이보다 1배 이상이 되면 임피던스 정상의 측면에서 용이하게 안테나의 특성의 크기를 증가시키기 때문인oheniya는 도로가 되어 지하와 지하와의 공기층이 얇아지면 안테나의 성능을 저하시키게 되므로 패치의 폭은 길이와 거의 유사하게 결정한다. 그러므로 책임하고 Slot이 삽입된 안테나의 경우 최적의 폭을 적절히 할 것으로 설계하여 안테나의 성능을 저하시키지 않으면서 임피던스 정상을 설계하고 광대역화 할 수 있다. 즉, 마이크로스트립 안테나의 입력 임피던스는 패치의 폭을 증가시킬수록 주파수 변화에 따른 임피던스의 변화가 줄어들어 패치의 길이와 Slot에 의한 2차 공간은 넓은 주파수 대역에 걸쳐 임피던스 정상이 이루어지고 이를 통하여 광대역 특성을 얻을 수 있게 된다[8-9].

을 응용하여 주파수 소요량 대역폭이 넓은 4세대 이동통신 AP용 E-shaped 안테나를 설계하였다. 그림 1은 E형 패치 안테나의 구조를 보여주고 있다. 안테나 설계 프로그램인 CST사의 Microwave Studio 5.0 품에 의해서 E-shaped 패치 안테나의 설계변수를 최적화한 결과를 그림 2에 나타내었다. 이때, 슬롯의 폭(SW)를 증가시킬수록 캐피터의 크기와 임피던스 같은 증가하여 공간주파수가 낮아지는 것을 볼 수 있다. 이를 통하여 슬롯의 폭이 작게 설계를 최적화 할 수 있는 중요한 요소임을 알 수 있다. 이 결과를 바탕으로 중심주파수 3800MHz에서 최적화

그림 1. 단일 E형 안테나의 경연도

그림 2. SW변화에 따른 입력 반사손실

<table>
<thead>
<tr>
<th>설계변수</th>
<th>GW</th>
<th>GL</th>
<th>PW</th>
<th>PL</th>
<th>EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>설계변수</td>
<td>SW</td>
<td>SL</td>
<td>h1</td>
<td>h2</td>
<td>Feed distance</td>
</tr>
<tr>
<td>Length</td>
<td>3</td>
<td>26</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

그림 3. 단일 E형 안테나의 입력 임피던스

그림 4. 단일 E형 안테나의 E-plane 방사패턴

그림 5. 단일 E형 안테나의 H-plane 방사패턴

III. 제안된 E-shaped 적층 안테나의 설계

최종 설계할 안테나의 사양을 표 2에 나타내었다. 앞서 설계한 단일 E형 안테나의 대역폭을 개선하기 위하여 적층구조를 사용하였으며, 그 안테나의 구조는 그림 6에서 보여주고 있다. 이때, 단일 E형 안테나에 바로 적층구조를 사용하게 되면 캐주스탄스 값의 변화, 인덕턴스 값의 변화, 결합도 약화, 후면방사와 증가 등의 요소 변화로 인하여 종은 특성을 얻을 수 없게 되어 그 설계 변수를 다시 변화 시켜야 했다. 이 결과를 바탕으로 제안된 E-shaped 안테나의 최적화시킨 설계 변수를 표 3에 나타내었다.

| 표 2. 제안된 안테나의 사양 |
| E형 적층 안테나 |
Frequency Range	3400 ~ 4200[MHz]	
VSWR	≤ 1.5	
Input Impedance	50 [Ω]	
Radiation Pattern	Directional	
Gain	≥ 8.0	
Half Power Beam Width	≤ 60°	

그림 6. 제안된 E형 안테나의 정면도

| 표 3. 제안된 E형 안테나의 최적 설계 변수 [mm] |
설계변수	GW	GL	PW	PL	PW1	PL1	EL
Length	100	80	60	34	50	24	16
설계변수	SW	SL	h1	h2	Feed distance		
Length	8	24.8	6	5	7		
그림 7. 제안된 안테나의 입력 반사손실

그림 8. 제안된 안테나의 입력 임피던스

그림 9. 제안된 안테나의 E-plane 방사패턴

그림 10. 제안된 안테나의 H-plane 방사패턴

그림 11. 제안된 안테나 이득

IV. 제안된 E-shaped 적층 안테나의 제작 및 측정
안테나 설계 툴인 CST Microwave Studio 5.0에서 안테나의 제반 특성을 예측하였으며, 이 결과를 바탕으로 최적으로 설계된 안테나는 공기층에 의해 분리되어진 방사체와 접지면을 연결하는 프로브 및 방사체의 유효에 의한 안테나 파손을 막기 위해서 유전율이 매우 낮은 foam(εᵣ=1.03)으로 고정하여 제작하였다. 제작된 실물 사진은 그림 12에 나타내었다.

제작된 안테나는 Agilent 8753ES VNA (Vector Network Analyzer)를 사용하여 측정하였으며, 시뮬레이션 결과와 비교하였다. 그림 13에서 입력 반사손실을 비교하였으며, 그림 14와 그림 15에서 각각 중심주파수 3800[MHz]의 E-plane 방사패턴과 H-plane 방사패턴을 나타내었다. 이 두 측정결과는 시뮬레이션 결과를 비교하여 나타내었다.

그 결과를 보면 VSWR 2:1인 범위에서 약 2060-[MHz]라는 매우 좋은 대역 특성을 나타내었으며, 방사패턴을 측정한 결과 E-평면에서는 안테나 이득 10.5[dBi], 3 dB 림포는 50°를 나타내었고, H-평면에서는 안테나 이득 10.7[dBi], 3 dB 림포는 59.2°라는 특성을 나타내었다. 또한, 전주파수 대역에서 9[dBi] 이상의 높은 이득을 나타내었다.

그림 14. 제작된 안테나의 E-plane 방사패턴

그림 15. 제작된 안테나의 H-plane 방사패턴

그림 16. 제작된 안테나의 이득

V. 결론

본 논문에서는 E형 적층패치를 이용하여 4세대 이동통신 AccessPoint용 광대역 안테나의 설계 및 제작에 관한 연구를 하였다.
E형 패치는 전류의 이동경로를 길게하여 소형화 및 광대역화 할 수 있었으며, 동축 프로브의 안테타성분이 습득호 의한 캠페셔터 성분을 보상하여 더욱 광대역화된 안테나를 제작할 수 있었다. 첫 번째 패치의 위에 두 번째 패치를 직중함으로써 56% (2600MHz)의 임파던스 대역폭을 얻을 수 있었다.

<table>
<thead>
<tr>
<th></th>
<th>제안된 안테나 실험 결과</th>
<th>Simulation Result</th>
<th>Measurement Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>3400 ~ 4200 [MHz]</td>
<td>3160 ~ 4760 [MHz]</td>
<td>3230 ~ 5290 [MHz]</td>
</tr>
<tr>
<td>VSWR</td>
<td>≤ 1.5</td>
<td>≤ 1.5</td>
<td>≤ 1.5</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>50 [Ω]</td>
<td>50 [Ω]</td>
<td>50 [Ω]</td>
</tr>
<tr>
<td>Radiation Pattern</td>
<td>Directional</td>
<td>Directional</td>
<td>Directional</td>
</tr>
<tr>
<td>Average Gain</td>
<td>≥ 8.0</td>
<td>≥ 9.2</td>
<td>≥ 9.6</td>
</tr>
<tr>
<td>Half Power Beam Width</td>
<td>≤ 60°</td>
<td>≤ 52°</td>
<td>≤ 50°</td>
</tr>
</tbody>
</table>

따라서 본 논문에서 사용한 설계 방식으로 제작된 안테나는 4세대 이동통신(IMT-Advanced) AccessPoint용 안테나로서 동작하기에 충분한 대역폭과 이득을 얻을 수 있었다.

참고문헌