Evaluation of electrochemical characteristics for friction stir welding part of 6061-T6 specimen for upper structure of Al ship

Seong-Jong Kim*, Min-Su Han**, Yong-Bin Woo***, Jong-Sik Park****
Jong-Shin Kim***** Kyung-Joon Lee******

* ** *** **** Division of Maritime Engineering, Mokpo Maritime University
***** Korea Register
****** Master Marine Boatbuilding

1. 서론

 최근 국내외적으로 환경규제가 강화되면서 FRP 선의 경우 채선 시 환경유해 물질이 발생하여 그 처리 방법이 전무한 실정이며, 화재에 취약하며 많은 인적, 경제적 손실을 입힌 사고가 다발하였다.
또한 FRP선의 구성 물질이 허비 회수로 반사시키는 강도가 약하기 때문에 중대한선박이 위치로 파악하지 못하여 결국 충돌사고로 이어지는 사고가 전체 사고의 85%를 차지하고 있는 실정이며, 이에 대한 대안으로 알루미늄 선박에 대한 관심이 고조되고 있다.
알루미늄선은 강선에 비하여 비강도가 높아 경량화에 의해 고속화가 가능하며, 추진용 연료의 절감, 높은 내식성에 의한 유지 보수가 용이, 폐선 시 재활용이 가능하여 환경 친화적인 재료이며, FRP 선 대비 많은 장점을 가지고 있다. 이러한 알루미늄 선박은 해수와 직접 접촉하는 선체는 5000계열의 알루미늄-마그네슘 합금이 주류를 이루며, 상부는 6000이 주류를 이룬다. 기존에는 주로 5000계열에 대한 다양한 용접법을 연구하였으며, 또한 부식 특성, 음력부식균열과 수소취화를 방지할 수 있는 최적의 조건 등을 연구한 바 있다. 따라서 본 연구에서는 알루미늄 선박의 상부구조물로 많이 사용되는 6061-T6 합금에 따라 다양한 조건에서 마찰교반용접을 실시하여 최적의 조건을 규명하고, 최적의 조건에서 마찰교반용접을 실시한 후 모체부와 용접부에 대하여 전기화학적 실험을 실시하여 오염하는 그 복합이 있다.

2. 실험 방법

알루미늄 선박의 상부 구조물에 많이 사용되는 6061-T6 시편에 대하여 마찰교반용접을 실시하였다. 이에 용접조건은 공구의 이어 직경은 20Φ, 편 길이와 압입 길이는 4.5mm, 편 직경은 5Φ, 위치는 1.0mm, 전진각은 3°로 하였으며, 전자어형 공구를 반시계 방향으로 실시하였다. 또한 다양한 화학적 조건과 이어속도를 반복으로 하여 실시하였으며, 그 내 역을 Table 1에 나타내었다. 또한 인장 시험은 그립 거리는 90mm, 정부강의 길이는 50mm, 두께는 5mm로 가공하였으며, 인장시험은 대기 중에서 0.2mm/min의 이어속도로 3회 실시하여 최대인장 강도, 황록강도, 연성율, 파탄되는 시간 그리고 흡수에너지의 평균을 상호 비교하여 최적의 마찰교반용접 조건을 규명하였다. 또한 최적의 마찰교반용접 조건에서 모체부와 용접부에 대하여 전면비교용에서 자연전위 측정 실험, 양분극 실험, 음분극 실험, 탐침분석 그리고 감바닉 실험을 실시하였다.

3. 실험결과 및 고찰
Table 1. 6061-T6 합금의 마찰교반 융점 조건

<table>
<thead>
<tr>
<th>공구의 조건</th>
<th>이적</th>
<th>관</th>
<th>관</th>
<th>합입</th>
<th>나사</th>
<th>전진</th>
<th>각</th>
<th>공구혼합 방향</th>
</tr>
</thead>
<tbody>
<tr>
<td>20Φ 4.5 mm</td>
<td>5Φ 4.5 mm</td>
<td>1.0 mm</td>
<td>3°</td>
<td>반시계 방향</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>융점 조건</td>
<td>회전속도 (RPM)</td>
<td>이송속도 (mm/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>22, 87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>22, 87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>22, 87, 124, 342, 507, 720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>22, 87, 124, 342, 507, 720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>22, 87, 124, 342, 507, 720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>22, 87, 124, 342, 507, 720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2에서 다양한 조건에서 마찰교반용접을 실시하여 로봇을 이용한 융점을 실시한 경우에 비하여 양호한 특성을 보인 조건을 나타내고 있다. 본 실험 결과는 고찰에서 다루지 않은 조건은 융점 결과가 좋지 않아서 인장시험을 실시하지 못한 조건에 해당된다. 각 소열 별 특성을 비교한 경우 최대압착고도와 향당고도는 대체적으로 이송속도가 높을수록 높은 값을 나타내었으며, 회전수와는 큰 특성이 나타나지 않은 사실을 확인할 수 있었다. 그러나 연산율과 파단시간은 반대로 이송속도가 높을수록 높은 값을 나타내어 최적 조건을 규명하는 데 많은 영향이 있었다. 이러한 6061-T6의 경우는 열처리 합금으로 다른 재료에 비하여 모제 대비 현저히 낮은 응접부의 기계적 특성을 보여주었다. 이를 함 palabra기 위해서는 시효처리 등과 같은 다양한 열처리 기술을 적용함으로써 그 특성을 향상시키기 앞으로도 사료된다. 결국 최대압착고도와 향당고도는 800RPM ~ 1800RPM의 범위에서 최적 수와 342, 507mm/min의 높은 이송속도를 보인 조건에서 우수한 특성을 나타낸 반면, 연산율과 파단 시간이 그리고 헤패너지지는 양호한 결과를 나타내지 않았다. 한편 연산율과 파단시간과 그 헤패너지 비교에서 모든 회전속도에서 낮은 이송속도를 보인 조건에서 양호한 특성을 나타내었다. 결국 모든 기계적 특성을 만족시키는 조건은 1100RPM, 507mm/min인 경우가 최적의 마찰교반용접 조건으로 규정하였다. 전기화학적 특성 평가는 가장 우수한 특성을 나타낸 마찰교반용접 조건에서 평가하였다.

![Fig. 1 배열의 조건에서 마찰교반용접된 6061-T6 합금의 해수용액에서의 자연전위 비교](ET-FSW6061.png)

이상 해수용액에 포함된 염소이온에 대한 저항성이 응접부가 강한다는 것을 의미한다. 또한 해수 용액에서 결과적으로 전자가 형성되었다. 한편 약한 모제부에 부식이 발생하기 때문에 대응형-소형적 현상은 발생하지 않아서 양호한 전기화학적 전도율-
마찰교반 용접된 섬박 상부구조물용 6061-T6 합금의 전기화학적 특성 평가

보일 것으로 판단된다. 그러나 전 연구에서 5456-H116 합금의 경우는 해수 용액내에서 초기에 급격히 전위가 균형점으로 이행하였으며, 용접부와 모제부는 각각 1200초(-0.695 V)와 4000초(-0.755 V)에서 가장 높은 값을 나타내었으며, 이는 해수에 침식과 동시에 시편 표면에 부동태 피막 형성으로 인하여 전위가 상승한다는 사실을 알 수 있었다. 이후 20,000초 정도까지 부동태 피막의 재 생성으로 인하여 전위는 꾸준히 균형점으로 이행하였다. 두 알루미늄 합금의 공통점은 모두 칼바니 실이 형성되었을 때 모제부에서 부식이 발생하는 경향을 유발할 수 있었다.

Fig. 2는 최적 조건에서 마찰교반응합된 용접부와 모제부에 대한 해수용액에서의 양분극 곡선을 비교한 그레프이다. 개로전위 추위에서는 거의 유사한 경로가 관찰되었다. 개로전위(Open circuit potential)에서 균형점으로 이행한 경우 모제부는 부동태 현상이 관찰된 반면 용접부는 꾸준한 전류 밀도의 상승현상이 관찰되었다. 여기서 모제의 경 로는 오삼용액 내의 알루미늄은 Al₂O₃나 Al₂O₃·3H₂O와 같은 피막이 형성되어 전류밀도가 감소하여 부식이 되지 않으나, 해수환경 하에서는 해수 속에 포함되어 있는 원소전은 부동태 피막을 파괴하여 전류밀도가 상승한다. 따라서 해수 환경 하에서 용역부식균열에 대한 저항성은 모제부가 용접부에 비하여 약한 경로를 보일 것으로 판단된다.

Fig. 3은 최적 조건에서 마찰교반응합된 용접부와 모제부에 대한 해수용액에서의 입물극 곡선을 비교한 그레프이다. 그레프에서 보는 바와 같이 모든 시험편에 대한 전체적인 경향은 개로전위에서부터 용접산소환원반응 (O₂ + 2H₂O + 4e⁻ → 4OH⁻)에 의한 농도분극과 2H₂O + 2e → H₂ + 2OH⁻의 수소발생에 의한 화학반응의 경향을 나타냈다. 두 시험 모두 용접산소환원반응에 의한 농도분 극은 개로전위에서부터 -1.6 V정도까지 나타났다. 이후 용접산소환원반응과 화학반응의 경계점은 -1.6 V로 나타났으므로 이 전위는 음극반응 작용 시 한계전위에 해당한다. 또한 양분극선과 비교하여 양극반응에 비해 음극반응의 경우가 용접 산소의 농도분극의 영역에서 보다 흔한 낮은 전류 밀도를 나타내었으며, 빛전위 영역도 넓기 때문에 양극 반응에 비해 음극반응의 경우가 효과적일 것으로 판단된다. 이후 수소가스 발생에 의한 화학반 응극을 나타낸 전위에서에는 음극부와 모제부 모두 거의 유사한 전류밀도를 나타내었음을 알 수 있다. 또한 전 연구에서는 알루미늄 내에 포함된 전류용량이 마찰 교반 용접으로 인하여 발생한 열에 의한 전류용량의 일부가 제거됨으로써 내식성 이 개선되는 효과에 관해 연구한 바 있다. 또한 고정력의 수소취화에 관한 연구에서 개로전위에서 활성화반응의 경향을 보인 후 용접산소환원반응 (O₂ + 2H₂O + 4e⁻ → 4OH⁻)에 의한 농도분극과 2H₂O + 2e → H₂ + 2OH⁻의 수소발생에 의한 활 성화반응의 경향을 나타내었으며, 농도분극과 활성화 반응의 전위점은 대략 -1.0 V (SCE)로 나타났다. 그러나 본 시험은 이보다 높은 낮은 전류 밀도에서 대략 -1.6 V를 나타냈으며 내식성은 흔한 수소취화에 대한 저항성이 우수한 금속임을 재확인할 수 있었다. 또한 고정력의 수소취화에 관한 연구에서는 전류밀도가 높은 전위에서 수소취화 현상이 관찰되었는데 이는 원자수 수소의 영향에 기인한 것임을 입증한 바 있다.

Fig. 4는 최적 조건에서 마찰교반응합된 용접부와
_paper_content_