Microstructures and Mechanical Properties of Biocompatible Ti-35%Nb-2.5%Sn Alloy for Biomedical Applications

Division of Advanced Materials Engineering, Research Center of Engineering Technology;
*Department of Materials and Process, The University of Waikato
(kdwoo@chonbuk.ac.kr†)

Ti-35%Nb-2.5%Sn powder was prepared by high-energy ball milling. The particle size, phase transformation and microstructure of the as-milled powder were investigated by particle size distribution (PSD) analyzer, scanning electron microscope (SEM), X-ray diffractometer (XRD), transmission electron microscope (TEM) and differential thermal analysis (DTA). The milled powders were densified by heating up to a sintering temperature varied from 800 to 1100 °C with PCAS (Pulse Current Activated by Sintering). PCAS was effective method to fabricate the fine grain and fully densified Ti-35%Nb-2.5%Sn alloy. The density of the compacts consisting of the milled Ti-35%Nb-2.5%Sn powder increased with increase of sintering temperature, but that of the compacts consisting of Ti-35%Nb-2.5%Sn powder blend only increased with increase of sintering temperature up to 950 °C. Microstructural examination of PCAS sintered Ti-35%Nb-2.5%Sn alloy using 4h-milled powder showed Nb-rich phase and Nb-poor phase which are fine and homogeneously distributed. The sintered Ti-35%Nb-2.5%Sn alloy with milled powder showed higher hardness and better wear resistance properties and also biocompatibility than the Ti-6Al-4V alloy.

Keywords: biomaterials, biocompatibility, corrosion resistance, ELISA (Enzyme-Linked Immuno Sorbent Assay), HEBM (high energy ball mill), sintering, Ti-Nb-Sn alloy.

Sol-Gel법에 의한 calcium titanate buffer layer process와 Hydroxyapatite 코팅

이병철, A. Balakrishnan†, 김태남, 박종근*
배제대학교 재료공학과; *한국과학기술원 재료공학과
(the_krecian@yahoo.com†)

The present study evaluates this effect of a (CaTiO3: CTO) intermediate coating on the bonding strength of HA to Ti6Al4V (TAV) substrate. The CTO and HA precursors were coated on TAV by sol-gel dip-coating method. A single CTO layer (~ 500 nm thickness) was coated and heat treated at 750 °C prior to five times of HA coating. The HA coating showed a thickness of 8-10 μm, after the heat treatment at 600 °C. Phase formation, surface morphology, and interfacial microstructure were investigated by x-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM observations revealed no cracks on the HA/CTO surface. However surface cracks were observed when HA was directly coated on TAV. The bonding strength of HA/CTO increased almost three times compare to direct HA coatings. The higher bonding strength on CTO coated sample could be attributed to the formation of micro-cracks, the high surface roughness and high interfacial bonding between HA and CTO layer.

Keywords: Sol-gel, Surface cracks, Hydroxyapatite, Bonding strength