Co-Channel Interference 환경에서 Alamouti coded OFDM System의 성능개선

이성근, 오대원
고려대학교 전자통신공학과

Performance Improvement of Alamouti coded OFDM System under Co-Channel Interference

Sung Gaun Lee (sunggaun.lee@korea.ac.kr), Tae Won Oh (taewon@korea.ac.kr)
Department of Radio and Communication Engineering, The Graduate School, Korea University

Abstract - 대역폭의 이동 고속통신 환경 하에서 다중경로 제어밀에 의한 성능평가의 방향을 효과적으로 축소하고, 통상은 극대화하기 위해 MIMO(Multi-Input Multi-Output)와 OFDM(Orthogonal Frequency Division Multiplexing) 기술들이 차세대 이동통신시스템으로 최근에 각광을 받고 있다. 그러나 차세대 시스템에서는 Co-Channel Interference의 영향을 심심하게 줄일 수 없으며, 이 영향 또한 무단적이지 않다. 그러므로, 본 논문에서는 이러한 MIMO OFDM 시스템의 Co-Channel Interference의 영향을 줄이고 성능 향상을 위해 Interference Cancelling 기법을 적용한 STBC-OFDM 시스템의 성능을 MATLAB simulation을 통해 기술하였다.

1. 서론

최근 들어 수많은 데이터 전송과 전송효율 향상을 위해 여러 가지 다중 액테나 기술이 활발히 연구되고 있다. 이러한 STBC(Space Time Block Coding)는 시공간 복잡성을 전혀 다중 액테나를 통해 성능향상을 위해 수신한 데이터를 적절한 방식으로 분할하여 수신한다. STBC 기법은 Alamouti에 의해 제안되었으며, 2채널의 수신 액테나에 대해 각각의 기술이 이루어지며, 이후 Tarokh에 의해 3채널 또는 4채널의 수신 액테나에 적용하도록 확장되었다[1].

전한 OFDM 방식은 고속의 데이터 전송을 적절한 방식으로 무선 및 디지털 방송 시스템에서 제약되었으며, 차세대 이동통신 시스템의 전송방식으로 유력하다고 보고되고 있다. 따라서 STBC 기법을 OFDM 시스템에 적용한 STBC-OFDM 시스템은 WiBro와 같은 차세대 이동통신 시스템에서 활용될 수 있다. 본 논문에서는 이러한 STBC-OFDM의 기존 성능을 분석한 후, CCI(Co-Channel Interference)에 의한 시스템의 성능 변화 정도 및 CCP에 의한 성능 변화를 보여주기 위해, RLS-MLSE에 기반한 Interference Cancelling Equalizer의 기법을 사용함으로써 시스템의 성능을 분석한다.

STBC는 전송하지 않는 신호를 공간과 시간에 따라 분할한 후에 송신 액테나를 통해 전송하는 방식이며, 주신에서는 Maximum Likelihood Decision Rule에 의해 복원이 가능하다. Alamouti 코드는 송신 액테나가 2개일 때 사용하는 방식으로 전송하고자 하는 2개의 별도 송신은 액테나와 같이 공간과 시간적으로 제공되면 되어 전송이 된다.

2. 본론

2.1 Co-Channel Interference 환경에서의 STBC-OFDM 시스템

본 논문에서 고려한 Co-Channel Interference 환경에서의 STBC-OFDM 시스템의 구조는 그림 1과 같다.

![그림 1] Co-Channel Interference 환경의 STBC-OFDM 시스템의 블록 다이어그램

위 그림에서 용어의 구조는 desired 신호와 Interference 신호 사이에 phase offset을 주어 신호를 mapping 하여 전송하는 과정을 나타내고 있다[3][6]. 이렇게 desired 신호와 Interference 신호 사이에 phase offset을 주므로 새로운 형성된 desired 신호와 Interference 신호 복합의 phase offset은 ambiguity point 가지 때문에로 인해 MSLE 해석을 가해져서 Co-Channel Interference cancelling의 성능이 향상할 수 있다[3][6].

2.2 Co-Channel Interference

![그림 2] desired 신호와 Interference 신호의 좌표 변화에 따른 ambiguity point

이상의 결과로 나타낸 결과를 통해 Alamouti coded OFDM의 경우 수신차의 성능은 아래와 같이 정리할 수 있다.

\[\hat{s}_0 = \sum_{i=1}^{2M} \arg \min_{n_s \in \mathbb{C}} d^2(\hat{s}_0, s_n) \]

\[\hat{s}_1 = \sum_{i=1}^{2M} \arg \min_{n_s \in \mathbb{C}} d^2(\hat{s}_1, s_n) \]
그림 2는 SIR(Signal to Interference Ratio) dB 값에, QPSK mapping을 갖는 desired 신호와 interference 신호가 랜덤로 구성된 constellation point을 나타내고 있다. 각 방향 그래프는 desired 신호와 interference 신호를 나타낸다. 이중 그래프의 5개의 ambiguity point가 헷갈리기 쉽기 때문에, desired 신호와 interference 신호가 랜덤으로 구성된 constellation point을 갖는 그래프를 갖는 그래프가 헷갈리기 쉬운 그래프이다. 이는 ambiguity point가 정기적으로 나타나기 때문에, RLS-MLSE(Maximum Likelihood Sequence Estimation) 방법으로 CCI에 대해 방향을 정할 수 있다. 이는 desired 신호와 interference 신호가 랜덤으로 구성된 phase offset 주파수를 갖는 그래프에서의 방향을 결정하기 때문에, RLS-MLSE의 제목과 사용하는 방법은 이미 여러 논문에서 사용한 결과가 있음을 알 수 있다.[5][6][7]

2.4 Interference cancelling

그림 3은 phase offset을 갖는 desired 신호와 interference 신호에 대한 CCI 경로를 위해 RLS-MLSE interference canceller를 갖는 수신기가 구조를 변경한다. 그림 1의 1차의 오차 신호는 desired 신호와 interference 신호가 랜덤으로 구성된 constellation point을 갖는 그래프를 갖는 그래프가 헷갈리기 쉬운 그래프이다. 이는 ambiguity point가 정기적으로 나타나기 때문에, RLS-MLSE(Maximum Likelihood Sequence Estimation) 방법으로 CCI에 대해 방향을 정할 수 있다. 이는 desired 신호와 interference 신호가 랜덤으로 구성된 phase offset 주파수를 갖는 그래프에서의 방향을 결정하기 때문에, RLS-MLSE의 제목과 사용하는 방법은 이미 여러 논문에서 사용한 결과가 있음을 알 수 있다.[5][6][7]

그림 5는 SIR(Signal to Interference Ratio)의 변화에 따른 신호의 변화를 나타낸 그래프이다. 결과에서 알 수 있듯이 SIR은 적수록 신호의

3. 결론

본 논문은 CIC system에서의 성능 개선을 위해 제안한 Interference canceller를 Alamouti coded OFDM/STBC-OFDM 시스템에도 적용가능하다는 것을 MATLAB 시뮬레이션을 통해 증명하였다. Co-Channel interference에 의한 성능에서는 성능이 아주 좋지 않은 상황에 이루어지기 때문에, 본 논문은 제안한 기법의 유용성을 검증하기 위해 CAR과 BER 유용성을 보면 보았고, 따라서 각각의 실험에서 각각 가능한 STBC-MIMO 기법에서 CCI에 대한 영향을 줄이기 위한 방법을 사용할 수 있는 것으로 기대한다.

[참고 문헌]