Multiple Moving Person Tracking
based on the IMPRESARIO Simulator

Hyeon-deok Kim* · TaeSeok Jin**

ABSTRACT

In this paper, we propose a real-time people tracking system with multiple CCD cameras for security inside the building. The camera is mounted from the ceiling of the laboratory so that the image data of the passing people are fully overlapped. The implemented system recognizes people movement along various directions. To track people even when their images are partially overlapped, the proposed system estimates and tracks a bounding box enclosing each person in the tracking region. The approximated convex hull of each individual in the tracking area is obtained to provide more accurate tracking information.

To achieve this goal, we propose a method for 3D walking human tracking based on the IMPRESARIO framework incorporating cascaded classifiers into hypothesis evaluation. The efficiency of adaptive selection of cascaded classifiers have been also presented. We have shown the improvement of reliability for likelihood calculation by using cascaded classifiers. Experimental results show that the proposed method can smoothly and effectively detect and track walking humans through environments such as dense forests.

Keywords
Multi-object tracking, CCD camera, Image Processing, Recognition, Real-time, Moving Tracker

I. Introduction

Real-time human tracking information is very useful source for security application as well as people management such as pedestrian traffic management, tourist flows estimation. To recognize and track moving people is considered important for the office security or the marketing research. Many of such measurements are still carried out on manual works of persons. Therefore it is necessary to develop the automatic method of counting the passing people.

Several attempts have been made to track pedestrians. Segen and Pingali [1] introduced a system in which the pedestrian silhouette is extracted and tracked. The system runs in real-time, however, the algorithm is too heavy to track many people simultaneously and can not deal well with temporary occlusion. Masoud and Pananikopulos [2] developed a real-time system in which pedestrians were modeled as rectangular patches with a certain dynamic behavior. The system had robustness under partial or full occlusions of pedestrians by estimating pedestrian parameters. Rossi and Bozzi [3] avoided the occlusion problem by mounting the camera vertically in their system in order to track and count passing people in a corridor, but assumed that people enter the scene along only two directions (top and bottom side of the image). Terada [4] proposed a counting method which segmented the human region and road region by using the three dimensional data obtained from a stereo camera. However, this system also assumed only simple movement of pedestrians.

In this paper, we propose a real-time people tracking system with multiple CCD cameras for security inside the building. The camera is mounted from the ceiling of the laboratory so that the image data of the passing people are fully overlapped. The implemented system recognizes people movement along various directions. To track people even when their images are partially overlapped, the proposed system estimates and tracks a bounding box enclosing each person in the tracking region. The approximated convex hull of each individual in the tracking area is obtained to provide more accurate tracking information. This paper is organized as follows: Section II describes the system architecture of the proposed people counting system. In Section III and IV present the real-time tracking system and tracking following detection, respectively. Experimental results and discussions are described in Section V. Finally, conclusions are presents in Section VI.

*Dept. of Electronics Eng, Jinju National University
**Dept. of Mechatronics Eng, Dongseo University
Manuscript received 2008. 05. 09
II. System Architecture

Fig. 1 shows a scene of the walking people through the corridor outside the building. There are incoming and outgoing individuals in the scene. Multiple cameras unit is hung from the ceiling of the laboratory so that the walking people can be observed and tracked in a tracking area in front of the door. The images captured by the cameras are processed and the number of the passing people is calculated.

To cope with inherently dynamic phenomena (people enter the scene, move across the field of view of the camera, and finally cross the counting line), the people recognizing and tracking problem has been decomposed into the following three steps: [3][6]

Fig. 2 Object detection and tracking using an PTZ Camera

2.2 Locating the Trackers

The first step after starting the system is to locate all of the trackers relative to a known reference coordinate system. This known reference system may be derived from CAD design data or nominal coordinate information. Any number of nominal points may be used to locate the trackers. The TransTrack application provides a simple, intuitive check-list interface to aid in this location procedure.

There is a simple tabular interface where each column represents an instrument and each row represents a point. The user simply positions a retro-reflector from one instrument in a particular target nest, then clicks in the corresponding cell in a table. The point is measured and that element is marked as completed. Once a sufficient set of common targets is measured, the user selects the “Locate” option, and all the trackers are located relative to the nominal coordinate data points. If there are any cases of insufficient data, the user is told specifically where additional data is needed. The entire location process should take no more than five minutes once the trackers are warmed up and online[8].

III. Real-time Tracking Algorithm

3.1 IMPRESARIO GUI

This chapter describes Impresario’s application developing interface (API) which can be used to extend Impresario’s functionality by developing new macros[10].

In order to be able to understand this guide and successfully develop own macros, general knowledge is needed about:

1. Concepts and usage of Impresario,
2. Concepts and usage of the LTI-Lib,
3. Object oriented programming in C++ including class inheritance, data encapsulation, polymorphism,
and template usage,
1 DLL (Dynamic Link Library) concepts and
programming on Windows platforms.

To build macro projects a compiler which
supports the ANSI C++ standard is required. For
convenience this development kit contains project
Impresario and the delivered macro DLLs were
developed with this environment. Different
compilers haven’t been tested yet but it should be
possible to produce executable code as well. The
development kit also contains two Perl scripts
which help to create new macro projects and
new macro classes. To be of use a Perl interpreter has
to be installed on the system.

3.2 Directory Structure

By default the development kit is installed in
the directory macodev as a subdirectory of the
Impresario software. It contains the following
subdirectories:

Doc: This directory contains the documentation
your are currently reading.

Libs: This directory stores third party libraries
which may be used during development of new
macro projects. By default, it contains a compiled
version of the LTI-Lib which is necessary at least
for image input and output.

Projects: Main directory for macro projects. It
contains a workspace file for Visual Studio .NET
2003 named macodevelopment.sln and two projects
whereas the Sample project serves as template for
new projects. The Macros project contains the
source code for most macros delivered with the
base version of Impresario.

Tools: Contains two Perl scripts createProject.pl
and createMacro.pl to create a new macro project
and a new macro class respectively. The
subdirectories within this folder contain template
files used by the scripts.

3.3 Creating a New Macro

In Impresario every macro is described by its
input ports, output ports, and parameters. The
visual appearance of a macro in the GUI is
depicted in the following figure. The input ports
are colored yellow, the output ports are colored
red, and the list of parameters is available in a
separate window. Internally a macro is
represented by a C++ class which is derived from
the class CMacroTemplate. CMacroTemplate defines
the common interface to Impresario. Therefore the
two files macrotemplate.h and macrotemplate.cpp have
to be included in every macro project[10].

![Fig. 3 Appearance of a standard macro property window](image)

IV. Detection and Tracking

In this paper, a walking people tracking system
of the type tracking following detection is built
and tested using IMPRESARIO and LTI-LIB which
is an open source software library that contains a
large collection of algorithms from the filed of
computer vision. As explained in previous section,
systems of this type are more appropriate in
scenes where inter-person occlusion is rare, e.g. the
surveillance of large outdoor areas from a high
camera perspective, than in narrow or crowded
indoor scenes. This is due to the necessity of the
tracked persons to be separated from each other
most of the time to ensure stable tracking results.

The general structure of the system as it appears
in IMPRESARIO is shown in Fig. 4. Image source
can either be a live stream from a webcam or a
prerecorded image sequence.

After reducing the noise of the resulting
foreground mask with a sequence of morphological
operations, person candidates are detected image
regions are passed on to the peopleTracking
macro, where they are used to update the internal
list of tracked objects. A tracking logic handles the
appearing and disappearing of people in the
camera field of view as well as the merging and
splitting of regions as people occlude each other
temporarily in the image plane. Each person is
described by a one or two-dimensional Temporal
Texture Template for re-identification after an
occlusion or, optionally, after re-entering the scene.
The tracking result is displayed using the
drawTrackingResults macro. The appearance
models of individual persons can be visualized with
the macro extractTrackingTemplates[10].

- 879 -
Fig. 4 IMPRESARIO for walking human tracking

V. Tracking Results

We show the result of tracking in the following figures. Background models that estimate the background color per pixel tend to detect shadows as foreground (false positives), if the underlying color space has an intensity component as in Fig. 5. To counter this problem the background color can be estimated only on a chromatic color space. But this does not always solve the problem, since a number of foreground objects might not be detected (false negatives) or an object dissolves into several regions as in Fig 5(5). The implemented segmentation algorithm uses both chromatic and intensity information to ensure a low number of false positives and negatives. The process of segmentation is illustrated in Figure 5:

A subject walked, bended and stretched in an observed area with changing orientations of his/her body. Fig. 5 shows the example images of the tracking result. In each image, the tracking results drawn by the colored rectangle with dots corresponding to samples. We first run a background subtraction algorithm on each of the camera views, and then, apply an image segmentation algorithm to the foreground regions. The segmentation algorithm differentiates between different objects even though they might occur in the same connected component as found by the background subtraction algorithm, but, of course, oversegments the component into many pieces. We next match regions along epipolar lines in pairs of cameras views. The mid-points of the matched segments along the epipolar lines of each stereo pair are back-projected to yield 3D points, which are then projected onto the ground plane.

These ground points are then used to form an object location probability distribution map using Gaussian kernels for a single image pair. The probability distribution maps are the combined using outlier-rejection techniques to yield a robust estimate of the 2D position of the objects, which is then used to track them. From these foreground regions the RG color histogram, the bounding box, the centroid, and the size are computed and broadcasted appropriately packaged and time stamped.

Fig. 5 Tracked walking human and extract tracking templates

Respect to the recognition process, it was observed that, having the object correctly located and tracked, people was positively recognized in almost all the cases. To indicate that a person has been positively recognized, a bounding box is drawn around its centroid. The whole human
analyzed were positively detected the most of the cases in frontal and back views (see Fig 5). Although the geometrical structure changes in an appreciable way for lateral views, the overall recognition process provides the correct result in the majority of the cases. The negative recognition behavior was tested also with positive results.

VI. Conclusions

In this paper, we proposed a method for 3D walking human tracking based on the IMPRESARIO framework incorporating cascaded classifiers into hypothesis evaluation. The efficiency of adaptive selection of cascaded classifiers has been also presented. We have shown the improvement of reliability for likelihood calculation by using cascaded classifiers.

This realizes robust and accurate human head tracking. We confirmed the effectiveness of our method by experiments on tracking of a human head in an outdoor environment.

RT-IMPRESARIO is a system for tracking objects in real-time video streams (video conferences) and allowing hyperlink anchors to be associated with these tracked objects. We have described here the further use of IMPRESARIO for applying automated object tracking to stored video streams, thereby allowing automated markup of archived video data with hyperlinks.

Extending IMPRESARIO from real-time to archived video requires a link layer to capture and maintain the link anchors as they are tracked from frame to frame; in the real-time mode, this information is available at each instant, but lost as each frame progresses to the next. We demonstrated such a link layer on top of the basic IMPRESARIO tracker using COTS software, namely, the Wired Sprites of Apple's QuickTime standard.

REFERENCES

