SnO$_2$-P$_2$O$_5$-B$_2$O$_3$ 유리구조 및 열적 특성

Yong-Tae An1,2, Byung-Hyun Choi1, Mi-Jung Ji1, Young-Soo Ko1, Hyung-Sun Kim2

Korea Institute of Ceramics ENG. & TECH1, Inha Univ.2

Abstract: SnO$_2$-B$_2$O$_3$-P$_2$O$_5$ system were prepared by melt-quenching technique in the compositional series containing 50, 55 and 60mol.% of SnO$_2$. A large glass-forming region was found at the phosphate side of the ternary system with homogeneous glasses containing up to 5-25mol.% of B$_2$O$_3$. For these glasses, thermal expansion coefficient(a), glass transition temperature(T_g), and glass softening temperature(T_s), were determined. The values a decrease with increasing B$_2$O$_3$ content, while T_g and T_s increased. The reason for the observed changes is local structure of the glasses. Local structure of the glasses was investigated by Raman and FT-IR measurements, suggesting that the number of bridging oxygens decreased whereas the non-bridging oxygen concentration increased with increasing SnO$_2$ content in the glasses.

Key Words: Pb-free, SnO$_2$-B$_2$O$_3$-P$_2$O$_5$, low-transition temperature

- 91 -