전극 변화에 따른 CuPc Field-effect Transistor의 전기적 특성

이호식*, 박용필**, 천민우**
*동신대학교, **조선대학교

Abstract: Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was 50μm, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

Key Words: Organic FET, CuPc, current-voltage characteristics

1. 서 론

최근 유기물을 이용한 박막 트랜지스터(Thin film transistor, TFT)와 발광 다이오드 소자(Light-emitting diode)에 대한 연구가 매우 활발하게 진행되고 있다. 유기 물질의 전도도의 저항도는 광물에 비하여 광장이 간단하 고, 또한 자전에서의 소자 제작이 가능하기 때문에 유기 물 반도체 소자에 비하여 많은 장점들을 가지고 있다 [1, 2].

또한 최근에 많은 연구가 주로 부가적 연구 유연성 (flexibility)에 관한 가벼운 플라스틱 기판(plastic substrate)의 사용이 가능해지고, 건강한 공정으로 소자를 제작할 수 있어서, 소자를 제작하는 비용의 절감 효과가 극대화 되고 있다.

이러한 유기물을 이용한 연구들은 상당히 많은 주제를 보이고 있으며, 특히 pentacene를 이용한 유기 박막트랜지 스타(Organic thin-film transistor; OTFT) 혹은 유기전 계효과트랜지스터(OTFT)의 경우는 이동도가 2 cm2/Vs 정도까지 보고되고 있다 [3, 4].

본 연구에서는 copper phthalocyanine (CuPc) 물질을 이용하여 FET 소자를 제작하고 이에 대한 전기적 특성을 알아보고자 한다. 또한 금속 전극을 Au와 Al을 사용하여 소자를 제작하고, 전기적 특성을 비교 분석하였다.

2. 실험

그림 1은 본 연구에서 사용한 물질의 구조 및 OFET 소자의 구조를 나타낸 것이다.

본 연구에 사용한 소자는 top-contact 형태의 구조를 가지고 있으며, 일연층으로 Si-wafer 위에 열 충작법으로 형성된 SiO2를 500nm 두께로 사용하였다. 또한 게이트 전극은 Au와 알루마늄을 사용하여 각각 소자를 제작하였다. 전극 형
성은 열 증착 방법을 이용하여 형성하였다. 활성층으로 사용한 CuPc 물질은 TCI (Tokyo Kasei Kogyo Co.)로부터 구입하였으며, 역시 열 증착 방법을 이용하여 박막을 형성하였다.

박막 형성시의 진공도는 약 10⁻⁶ [torr]였으며, 증착 속도는 0.5 [Å/s]의 속도로 유지하면서 증착하였다. 또한 기판으로 사용한 Si-wafer는 CuPc 물질을 증착하기 전에 기판의 세척을 위하여 30분 동안 UV/ozone 처리를 하여 사용하였다.

또한 OFET의 전기적 특성 측정은 Keithley type-2400을 이용하여 SMU (Source measure unit) 방법을 이용하여 측정을 하였다. 또한 유기 활성층의 표현의 특성은 AFM (Atomic force microscopy) 방법으로 측정하였다.

3. 결과 및 논의

3-1. CuPc 박막의 AFM 측정

그림 2는 CuPc 물질의 표면 특성을 알아보기 위하여 AFM 측정을 하였다.

Au와 Al을 source와 drain 전극으로 사용한 CuPc FET 소자의 전기적 특성을 그림 2에 나타내었다. 그림 2(a)에서 보면 Au를 전극으로 사용한 소자의 전기적 특성은 나타낸 것으로 전형적인 FET 소자의 특성을 보이고 있으며, 그림 2(b)에서 보면 Al을 사용한 소자에서는 gate 전압에 따라 다른 형태의 곡선을 보여주고 있다. 특히 gate 전압이 감소함수로 높은 drain 전압에서 전류의 방향이 바뀌는 것을 알 수 있다.

4. 결론

본 연구에서는 CuPc를 형성층으로 사용하고, source와 drain 전극 물질을 Au와 Al을 사용하여 FET 소자를 제작하였다. 그 결과 Au를 전극으로 사용한 FET 소자에서는 전형적인 FET 소자의 특성을 보이고 있으나, Al을 사용한 소자에서는 높은 drain 전압에서 그리고 낮은 gate 전압에서 전류의 방향이 바뀌는 두 가지 전류의 현상이 보이므로 판단된다.

참고 문헌