The current-voltage ($I-V$) characteristics of M-DNA molecules were investigated by attaching on the three-terminal electrode. The current variation monitored between source and drain by sweeping the gate voltage. For the current work, we mainly report the experimental results obtained from M-DNA prepared using λ (lambda) DNA. Once M-DNA molecules were trapped on the top electrode, the sample chamber was evacuated to minimize the humidity effects on the measurement of $I-V$ characteristics. We found that the current of M-DNA molecules measured between source and drain (I_{DS}) increases as both the gate voltage increases and decreases. Since the I_{DS} data obtained in this work were collected on vacuum, we suggest that the I_{DS} modulation caused by the gate voltage is due to the field effect.