A-KRS에 처분한 파이로 폐기물의 처분 안전성 평가 민감도 분석

강철형
한국원자력연구원, 대전광역시 유성구 대덕대로 1045
chkang@kaeri.re.kr

1. 서론


2. 평가 모델 및 결과


처분 안전성평가를 위하여 기준 사용후핵연료 (PWR 4.5 wt% U-235, 45,000 MWD/MTU, 5 years cooling)를 가정하고 이 기준 사용후핵연료로 pyro-process 공정을 거쳤을 때 나오는 폐기물의 양을 계산하였다 [2].

그림 2는 폐기물 교화체의 유출율을 10^{-5} 1/yr로 가정하였을 경우 A-KRS의 처분 안전성평가 결과이다.

다음은 안전성평가에 중요한 영향을 미치는 입력인자를 확인하고 그 영향을 평가하기 위하여 입력인자의 민감도 분석을 수행하였다.

Fig. 1. Schematic View of an EBS for Different Waste Streams

Fig. 2. Annual Individual Dose from Pyro-Process Waste with the Dissolution Rate of 10^{-5} 1/yr

표 1에 민감도 분석 평가에 사용된 입력인자와 확률분포를 나타내었다. 입력인자들에 대한 확률분포에 대한 정보가 부족하여 다양한 확률 분포를 가정하여 시험한 결과 입력인자의 중요도는 분포 형태에 크게 영향을 미치지 않았다. 본 평가는 표 1에서와 같이 균등 분포 (Uniform Distribution)와 스마 분포로 가정하고 Latin Hypercube Sampling 방법으로 200개의 사례 (Case)를 계산한 결과이다.
Table 1. Input Parameters for Sensitivity Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Min</th>
<th>Max</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container Failure Time [h]</td>
<td>Uniform</td>
<td>5</td>
<td>10</td>
<td>ET</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Early Time Failure [%]</td>
<td>Triangular</td>
<td>10</td>
<td>100</td>
<td>ET</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Waste Dissolution Rate [1/h]</td>
<td>Uniform</td>
<td>1</td>
<td>10</td>
<td>WD</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Fracture Length [m]</td>
<td>Triangular</td>
<td>1</td>
<td>100</td>
<td>FT</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>Dispersion in Fracture [m]</td>
<td>Triangular</td>
<td>1</td>
<td>10</td>
<td>DF</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Hydraulic Conductivity [mD]</td>
<td>Triangular</td>
<td>0.1</td>
<td>10</td>
<td>HC</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Porecty in MMCF</td>
<td>Triangular</td>
<td>0.01</td>
<td>0.1</td>
<td>PC</td>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td>MMCF Length [m]</td>
<td>Triangular</td>
<td>100</td>
<td>1000</td>
<td>ML</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>Dispersion in MMCF [m]</td>
<td>Triangular</td>
<td>1</td>
<td>10</td>
<td>AF</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig. 4. Peak Dose vs. Waste Dissolution Rate

Fig. 5. Peak Dose vs. Waste Canister Failure Time

3. 결론

한국원자력연구원에서 개발한 A-KRS에 처분된 폐기물 폐기물의 처분안전성과 입력인자의 민감도 분석을 수행하였다. 민감도 분석결과 폐기물의 유효성, 폐기물의 온도 등에 대한 연구결과가 중요하다. 본 연구는 교육과학기술부의 원자력연구개발 중앙 기획사업의 일환으로 수행되었음.

Fig. 3. Peak Dose vs. Time to Peak Dose

4. 감사의 글

본 연구는 교육과학기술부의 원자력연구개발 중앙 기획사업의 일환으로 수행되었음.

5. 참고문헌