On the development of an empirical proton event forecast model based on the information of flares and CMEs

  • Published : 2010.04.15


We have examined the occurrence probability of solar proton events (SPEs) and their peak fluxes depending three flare parameters (X-ray peak flux, longitude, and impulsive time). For this we used NOAA SPEs from 1976 to 2006, and their associated X-ray flare data. As a result, we selected 166 proton events that were associated with major flares; 85 events associated with X-class flares and 81 events associated with M-class flares. Especially the occurrence probability strongly depends on these three parameters. In addition, the relationship between X-ray flare peak flux and proton peak flux as well as its correlation coefficient are strongly dependent on longitude and impulsive time. Among NOAA SPEs from 1997 to 2006, most of the events are related to both flares and CMEs but a few fraction of events (5/93) are only related with CMEs. We carefully identified the sources of these events using LASCO CME catalog and SOHO MDI data. Specifically, we examined the directions of CMEs related with the events and the history of active regions. As a result, we were able to determine active regions which are likely to produce SPEs without ambiguity as well as their longitudes at the time of SPEs by considering solar rotation rate. From this study, we found that the longitudes of five active regions are all between $90^{\circ}W$ and $120^{\circ}W$. When the flare peak time is assume to be the CME event time, we confirmed that the dependence of their rise times (proton peak time - flare peak time) on longitude are consistent with the previous empirical formula. These results imply that five events should be also associated with flares which were not observed because they occurred from back-side. Now we are examining the occurrence probability of SPEs depending on CME parameters. Finally, we will discuss the future prospects on the development of an empirical SPE forecast model based on the information of flares and CMEs.