Characterization of (Na,K)NbO$_3$-Based Pb-free Piezoelectrics Doped with Cu-oxides

Yun Gee Lee, Sung Lim Ryu, Soon Chul Ur, Soon Yong Kweon
Chungju National University/ReSEM

Abstract: Recent efforts in developing Pb-free piezoelectrics have focused on the characterization of (Na,K)NbO$_3$-based materials. In this study, we investigated the effects of Cu-oxide doping on the piezoelectric properties of (Na,K)NbO$_3$. Key characterization techniques included X-ray diffraction (XRD), scanning electron microscopy (SEM), and piezoelectric measurements.

Keywords: (Na,K)NbO$_3$ ceramics, Piezoelectric properties, Cu oxides, doping effects

1. Introduction

PZT (lead titanate) is a widely used piezoelectric material due to its high piezoelectric properties. However, the use of Pb in its composition has raised concerns about environmental and health issues. Therefore, there has been a growing interest in developing Pb-free piezoelectrics. (Na,K)NbO$_3$ is a well-known piezoelectric material that can be modified to reduce its Pb content. In this study, we explored the effect of Cu-oxide doping on the piezoelectric properties of (Na,K)NbO$_3$.

2. Materials and Methods

The (Na,K)NbO$_3$ powder was synthesized using a solid-state reaction method. Cu-oxide powder was mixed with the (Na,K)NbO$_3$ powder in various weight percentages. The mixed powders were then sintered at high temperatures to form the ceramic samples. The piezoelectric properties were measured using a piezoelectric testing machine.

3. Results and Discussion

The piezoelectric properties of the (Na,K)NbO$_3$-CuO samples were found to be significantly improved compared to undoped (Na,K)NbO$_3$. The electromechanical coupling factor, d$_{33}$, and piezoelectric constant, k$_{33}$, were found to increase with increasing Cu-oxide concentration.

4. Conclusion

The results of this study suggest that Cu-oxide doping can be an effective method for improving the piezoelectric properties of (Na,K)NbO$_3$. Further research is needed to optimize the doping level and understand the underlying mechanisms.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2018R1A2B2008678).

References

© 2020, Korean Physical Society. All rights reserved.