Highly Porous Tungsten Oxide Nanowires As Resistive Sensor for Reducing Gases

Nguyen Minh Vuong, Hoang Nhat Hieu, Dongmi Jang, Hyuck Jung, Dojin Kim†
Chungnam National University
(doijn@cnu.ac.kr†)

Gas sensor properties of WO₃ nanowire structures have been studied. The sensing layer was prepared by deposition of tungsten metal on porous single wall carbon nanotubes followed by thermal oxidation. The morphology and crystalline quality of WO₃ material was investigated by SEM, TEM, XRD and Raman analysis. A highly porous WO₃ nanowire structure with a mean diameter of 82 nm was obtained. Response to CO, NH₃ and H₂ gases diluted in air were investigated in the temperature range of 100–340°C. The sensor exhibited low response to CO gas and quite high response to NH₃ and H₂ gases. The highest sensitivity was observed at 250°C for NH₃ and 300°C for H₂. The effect of the diameters of WO₃ nanowires on the sensor performance was also studied. The WO₃ nanowires sensor with diameter of 40 nm showed quite high sensitivity, fast response and recovery times to H₂ diluted in dry air. The sensitivity as a function of detecting gas concentrations and gas sensing mechanism was discussed. The effect of dilution carrier gases, dry air and nitrogen, was examined.

Keywords: Tungsten oxide, Nanowires, Single wall carbon nanotube, Gas sensor, Porosity

Synthesis of High-quality Graphene by Inductively-coupled Plasma-enhanced Chemical Vapor Deposition

Lam Van Nang, Challa Kiran Kumar, Namkyu Park, Vinaya Kumar Arepalli, Eui-Tae Kim†
Department of Materials Science & Engineering, Chungnam National University, Daejeon, Korea
(etkim@cnu.ac.kr†)

Graphene has attracted significant attention due to its unique characteristics and promising nanoelectronic device applications. For practical device applications, it is essential to synthesize high-quality and large-area graphene films. Graphene has been synthesized by elaborated mechanical exfoliation of highly oriented pyrolytic graphite, chemical reduction of exfoliated graphene oxide, thermal decomposition of silicon carbide, and chemical vapor deposition (CVD) on metal substrates such as Ni, Cu, Ru etc. The CVD has advantages over some other methods in terms of mass production on large-areas substrates and it can be easily separated from the metal substrate and transferred to other desired substrates. Especially, plasma-enhanced CVD (PECVD) can be very efficient to synthesize high-quality graphene. Little information is available on the synthesis of graphene by PECVD even though PECVD has been demonstrated to be successful in synthesizing various carbon nanostructures such as carbon nanotubes and nanosheets. In this study, we synthesized graphene on Ni/SiO₂/Si and Cu plate substrates with CH₄ diluted in Ar/H₂ (10%) by using an inductively-coupled PECVD (ICP-CVD). High-quality graphene was synthesized at as low as 700°C with 600 W of plasma power while graphene layer was not formed without plasma. The growth rate of graphene was so fast that graphene films fully covered on substrate surface just for few seconds CH₄ gas supply. The transferred graphene films on glass substrates has a transmittance at 550 nm is higher 94%, indicating 1~3 monolayers of graphene were formed. FETs based on the graphene films transferred to Si/SiO₂ substrates revealed a p-type. We will further discuss the synthesis of graphene and doped graphene by ICPVCD and their characteristics.

Keywords: Graphene, ICP-CVD