The Effect of Growth Temperature on the Epitaxial Growth of Vertically Aligned ZnO Nanowires by Chemical Vapor Deposition

임소영, 이도한, 장삼석, 김아영, 변동진
고려대학교 나노반도체공학과, 1고려대학교 신소재공학부
(dbyun@korea.ac.kr)

Vertically aligned single-crystal ZnO nanowires have been successfully grown on c-plane sapphire substrate using chemical vapor deposition (CVD) without catalyst. According to growth temperatures, it was changed ZnO growth characteristic. We investigated the effect of substrate temperatures on the growth ZnO films or nanowires on c-plane (0001) sapphire substrates. The ZnO films were acquired at 500 oC, whereas the ZnO nanowires were obtained at 600 oC, 700 oC, and 800 oC. The growth behavior diameter and growth rate of ZnO were changed due to different temperature. As a result of analyzing in-plane residual stress by X-ray diffraction, the optimized condition of ZnO nanowires were at 600 oC.

Keywords: ZnO, Nanowires, Compressive stress, Chemical vapor deposition

Tunable Magnetism by Magnetic Phase in Fe3O4/ZnO Multilayer

윤종구, 박창엽, 윤순길
충남대학교 신소재공학과, 1로스쿨 물리학과, 2충남대학교 분석과학기술대학원
(sgyoon@cnu.ac.kr)

Fe3O4 having half metallic property is one of the efficient spin filtering materials which are widely used in spintronic research field and ZnO is wide band gap semiconductor which can be used by tunnel barrier or semiconductor channel in spin MOSFET. We investigated the magnetic and the electric properties of Fe3O4/ZnO multilayer fabricated on c-Al2O3 substrate by pulsed laser deposition (PLD). For multilayer films, PLD was performed at variable temperatures such as 200~750 oC and at target distance from 40 to 80 mm, KrF eximer laser of 1.5 J/cm2 and a reputation rate of 2Hz. Fe3O4/ZnO multilayers were deposited at 4×10−6 Torr. After fabricating Fe3O4/ZnO multilayers, Fe3O4/ZnO multilayers were treated by RTA(Rapid Thermal Annealing) at various temperature to change magnetic phase. The magnetism of the multilayer is changed by thickness of the ZnO tunnel barrier. Magnetic phase of Fe3Ox showed a very small magnetism due to Fe2O3 α-phase, but large magnetism from Fe3O4 or Fe2O3 γ-phase was observed. In the present study, effect of the ZnO thickness on the MR (magnetoresistance) ratio was investigated in detail.

Keywords: Fe3O4, ZnO, Magnetic property, Pulsed laser deposition