Effect of Metallic Tungsten Concentration on Resistance Switching Behavior of Sputtered W–doped NbOx Films

이규민, 김종기, 나희도, 손현철
연세대학교 신소재공학과

In this study, we investigated that the resistance switching characteristics of W-doped NbOx films with increasing W doping concentration. The W-doped NbOx based ReRAM devices with a TiN/W-doped NbOx/Pt/Ti/SiO2 were fabricated on Si substrates. The 50 nm thick W-doped NbOx films were deposited by reactive dc magnetron co-sputtering at 400°C and oxygen partial pressure of 35%. Micro-structure of W-doped NbOx films and atomic concentration were investigated by XRD, TEM and XPS, respectively. The W-doped NbOx films showed set/reset resistance switching behavior at various W doping concentrations. The process voltage of set/reset is decreased and whereas the initial current level is increased with increasing W doping concentration in NbOx films. The change of resistance switching behavior depending on doping concentration was discussed in terms of concentration of metallic tungsten of oxygen of W-doped NbOx.

Keywords: NbOx, Resistance switching