Interaction between RuO\textsubscript{2} and Carbon Nanotubes – Photoemission and X-ray Absorption Study

Seung Youb Lee1, Yoo Seok Kim1, Chelho Jeon1, Kyuwook Ihm2, Tai-Hee Kang2, Chong-Yun Park1,*

1BK21 Physics Research Division & Department of energy science, Sungkyunkwan University, Suwon 440-746, Korea, 2Beamline Research Division, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea

Since the carbon nanotubes (CNTs) have extraordinary material properties, many researchers are trying to make a practical application in various fields [1]. In particular, the high surface area of CNTs was fascinated for nano-template on the catalytic system. RuO\textsubscript{2} coated CNTs are useful functional nano-composites in many applications, including super capacitors, fuel cells, biosensors, and field emitters. However, the research of interaction between CNTs and RuO\textsubscript{2} was not satisfied with various fields [2]. In this study, we will introduce the change of chemical and electrical state of RuO\textsubscript{2}/CNTs at different temperatures by synchrotron radiation photoemission spectroscopy (SRPES).

The t-MWCNTs used in this experiment were grown on the Ni/TiN/Si substrates by chemical vapor deposition. RuO\textsubscript{2} of 4-20 nm in thickness was deposited on the t-MWNTs by sputter. The SRPES measurements were carried out at the 4B1 beamline of the Pohang Accelerator Laboratory in Korea. The result of XPS measurement indicates that the deposited RuO\textsubscript{2} on the CNTs was reduced into pure Ru at above 300°C. And we confirmed that the effective work function of RuO\textsubscript{2}/CNTs was decreased with increasing temperature.

References
1. Ray H. Baughman, Anvar A. Zakhidov, Walt A. de Heer; Carbon Nanotubes-the Route Toward Applications; Science; 297 787 (2002).

Keywords: Carbon nanotubes, Ruthenium oxide, Synchrotron radiation photoemission spectroscopy