A Study of Performance Improving through Task Partitioning in Mobile Computing Environment

Jungseok Cho, Youjin Jung, Yunsoo Jung, Jaeho Lim, Doosan Cho
Dept. of Electronic Engineering, Sunchon National University

e-mail : mew26@snu.ac.kr

요 약

모바일 시스템은 제한된 하드웨어 리소스로만 구성된다. 예를 들면, 배터리 용량, 네트워크 대역폭, 저장 용량, 프로세서 성능 등이 그것이다. 이러한 제한된 리소스는 클라우드 서버로의 작업 분할을 통하여 감감될 수 있다. 제산량이 많은 부분을 리소스가 풍부한 서버에 전송하고, 서버로부터 결과를 받아 사용함으로써 리소스의 제약에서 벗어날 수 있다. 작업분할 기술들과 관련하여 많은 연구들이 지난 십여 년간 진행되었다. 본 연구에서는 이와 관련된 기존적인 논의들을 살펴보도록 하겠다.

1. 서론

컴퓨팅 기술의 발전은 지속적으로 확장되어 데스크탑에서 메인프레임까지 그리고 모바일과 임베디드 응용까지 광범위하게 포함하고 있다. 이러한 컴퓨터 기술은 보안, 환경 센싱, GPS 향별, 모바일 폰, 자동차 로봇 등 다양한 응용을 발전시킨다. 이러한 다양한 응용들은 상당히 제한된 시스템 리소스 환경에서 실행되고 있다. 예를 들면, 모바일 폰의 경우 배터리 용량, 환경 센싱의 경우 작은 크기, 저장성 프로세서, 작은 용량의 저장장치 등의 제약이 따른다. 대부분의 이러한 응용들은 무선 네트워크로 연결되어 있으며, 네트워크의 대역폭 또한 유선 네트워크의 대역폭에 비하여 수십배 작게 구성되어 있다. 현재로서는 이러한 시스템에서 실행되는 응용 프로그램의 복잡도는 기하급수적으로 증가하고 있다. 예를 들면, 모바일 폰의 영상처리 혹은 모바일 로봇의 제어 개념 등과 같이 갈수록 높은 복잡도의 응용들이 요구되고 있다. 따라서, 높은 복잡도를 지닌 응용 프로그램들이 필요한 시스템 리소스와 실제 가능한 시스템 리소스의 차이는 갈수록 증가하고 있는 실정이다.

분할실행 (offloading)은 제한된 리소스로 구성된 모바일 시스템의 능력을 확장하는 솔루션이다. 즉, 계산의 일부를 리소스가 풍부한 서버에 이주시켜 계산하도록 하여 모바일 시스템이 마치 복잡한 자원으로 구성되어 있는 듯한 환상을 응용 프로그램에 제공하도록 하는 서비스를 제공하는 것이 분할 실행 기법이다. 하지만 이것은 전통적인 클라우드-서버 기법과 차이가 있다. 클라우드는 편한 분할 계산 부분을 서비스로 이용하기 때문에, 모바일 분할 실행은 이득이 있을 경우에만 계산 부분을 서버로 이주시킨다. 이러한 분할계산은 또한 멀티프로세서 시스템 혹은 그 리드 컴퓨팅에서 사용하는 이주 모델과 다르다. 이 두 모델사이의 주요 차이점은 분할 실행은 사용자의 컴퓨팅 환경에서 벗어난 장소의 서버로 계산의 일부분을 이주한다는 점이다. 그 외 컴퓨팅에서 사용하는 프로세스 이주는 풍부한 컴퓨팅 환경으로 구성된 한 컴퓨터에서 다른 컴퓨터로 이주한다는 점에서 차이가 있다. 많은 연구들이 이러한 분할 실행과 관련된 이슈들을 다루어 왔다. 연계, 어떻게, 프로그램의 어노트를 이주할 지를 결정해야 최적의 분할 실행으로 성공 및 전력면적에서 이득을 얻을 수 있게 된다. 최적의 이동을 얻어내기 위해서는 네트워크 대역폭, 전송 메타데이터의 총량 등과 같은 다양한 파라미터들을 고려해야 한다.

2. 분할 실행 결정

계산의 일부분을 리소스가 풍부한 서버에 이주하기 위하여, 성능 이득과 에너지 절감의 정도를 기준으로 이주를 결정하기 위한 목적함수는 요구된다. 여기에서는 각각의 목적함수에 대하여 살펴보고자 한다. 성능 개선을 목적으로 하는 분할 실행에 관한 조건은 다음과 같이 표현될 수 있다. 우선 우리는 분할 실행을 위한 프로그램을 다음과 같은 두 개의 부분으로 구성한다고 가정하였다: 1) 반드시 모바일 시스템에서 실행되
이어 하는 모바일 시스템 하드웨어 관련된 부분, 2. 분할 실험이 가능한 시스템 하드웨어와 독립적인 부분, 우선 모바일 시스템의 처리속도를 Ms라 하자. 분할 실험 가능한 부분을 L이라 표시하면 모바일 시스템에서 L을 실행한 실험시간은 L/Ms와 같다. 만약 L을 서버로 이루어져 실행한다면, 이때 필요한 입력 데이터를 Di라 하고, 전송 시의 네트워크 대역폭을 B라 하면 데이터 전송시간은 Di/B가 되고 최적 분할 실험 시간은 Di/B + L/Ms가 된다. Ls는 서버의 처리속도이다.

\[(Mp \times L/Ms) > (Dp \times Di/B) + (Sp \times L/Ss)\]

따라서 공식(1)을 만족한다면 분할 실험을 진행하여 이득이 있는 것으로 판단하여 분할 실험을 진행하도록 결정한다. 이때 측정하는 조건은 다음 네 가지로 분류된다. 첫번째로 측정하려는 사이즈의 이주 가능한 계산 L이 요구된다. 그리고 충분한 이득을 얻을 포비도단에 요구된다. 두번째로 고성능의 서버 Ms가 요구된다. 많은 이득을 얻을 수 있도록 리소스가 풍부한 서버가 필요함으로 이득을 극대화 할 수 있기 때문이다. 세번째로 최소화한 데이터 전송이 요구된다. 분산 및 병렬 처리의 경우에도 통신 오비헤드가 이득의 대부분을 상쇄하는 경우가 많다. 따라서 최소한의 데이터 이동이 분할 실험에서도 핵심이 된다. 최소의 데이터 이동과 더불어 충분한 대역폭도 관건이다. 최소의 데이터를 빼어 시간안에 전송하는 것도 데이터의 양만이 중요하기 때문이다. 이 네 가지가 만족되면 분할 실험을 통한 이득은 충분히 시스템의 성능 개선 및 에너지 절감으로 이어질 수 있게 된다.


\[(Mp \times L/Ms) > (Dp \times Di/B) + (Sp \times L/Ss)\]

따라서 식(2)을 만족한다면 분할 실험을 통해 에너지 절감을 얻어낼 수 있다. 다항한 점은 분할 실행서서로 전송하는 데이터의 양은 대부분의 경우 매우 적다는 사실이다. 왜냐하면 페이즈폭이나 유튜브 같은 경우를 예로 들면, 대부분의 데이터는 이미 서버에 저장되어 있기 때문이다. 정리하면 분할 실행을 적용할 응용 프로그램의 특성이 모바일 시스템의 하드웨어에 맞게 쉽게 연계되어 있는 부분이 적어 L의 크기가 충분히 커진다면 분할 실행을 통한 이득을 대부분 얻을 수 있다는 것이다.

3. 결론

분할 실험을 모바일 환경에서 최대한 이용하려면 성능 및 에너지 측면의 이득을 크게 얻을 수 있을 것으로 예상된다. 또한 다른 고성능 기기의 성능에 맞추어 개발된 응용 프로그램도 일반 기기에서 사용 가능하도록 지원하여 제품의 생산성을 크게 향상시킬 수 있게 된다.

Acknowledgement

이 논문은 2010 년도 정부 (미래창조과학부)의 재원으로 한국연구재단 기초연구사업(2010-0024529), 2013 년도 정부 (교육부)의 재원으로 한국과학기술재단 (대학생 창의융합형 연구과제 지원사업)의 지원을 받아 수행한 연구임.

참고문헌