막내 에너지 관리 최적화를 위한 환경센서기반 제어 방법

윤순기, 최원식, 최성곤
충북대학교 정보통신공학부
e-mail : eunsk@chungbuk.ac.kr, wsocho@chungbuk.ac.kr, sgchoi@chungbuk.ac.kr

Energy Optimized Management algorithms base on Environment in Home Area

Soon-Ki Bun, Won-Seok Choi, Seong-Gon Choi
College of Electrical and Computer Engineering, Chungbuk National University

요 약
최근 전력수요의 급증으로 에너지 소비를 줄이기 위한 연구가 급부상하고 있다. 하지만 대부분의 사물인터넷 서비스들은 사람의 편의성을 위한 방향으로 발전해왔기 때문에 에너지의 효율화에 대한 고려가 부족하다. 따라서 본 논문에서는 실내 환경 상태 센서를 통한 에너지 관리 최적화 알고리즘을 제안한다. 에너지 관리 최적화 알고리즘은 실내에 설치된 센서를 통해 환경 정보를 모니터링하고 필요한 요식에 맞cient다고 개선할 알고리즘을 제안한다. 윈도, 조도, 습도 등 센서가 측정하는 정보는 주어진 인력내에서 사용자 환경에 적응적으로 최적화되어 에너지 소모를 감소시킨다. 성능분석결과 기존의 비교전략 algorithms의 경우 최대 약 180W의 대기전력을 절약하였고, 에어컨의 경우 한달에 약 38,500kW의 대기전력을 절약하여 환경에 따른 에너지 절약효과를 보였다.

1. 서론

최근 전력수요의 급증으로 환경에 대한 관심이 높아짐에 따라 전력산업에서는 효율적인 에너지 사용을 이끌어 내는 것이 화두가 되고 있다. 가정용 대기전력 연간 소모량 측정과 함께 기존전산기술 수치를 후추, 일본, 미국 등에서 대기전력 소모량이 높은 것으로 나타났다. 한국의 경우 소비전력이 수차례 보다 크게 증가하였고 이를 대기전력의 낭비를 줄이기 위한 기술들이 존재한다. 대표적으로 스마트 그리드를 예로 들 수 있다. 스마트 그리드는 전력재생과 인터넷의 연결을 통해 효율적인 서비스를 제공하기 위한 기술이다.[1][2]

사물인터넷은 이런 시대적 호흡 속에서 기존전력망에 ICT를 융합시켜 기기 및 시스템의 작동을 완성시키고 있다. 사물인터넷은 폭넓은 기존의 인터넷 프로토콜의 사용을 더욱 빠르게 일상화 되었다. 현재 우리 주변에서 흔히 사용하고 있는 IoT서비스들은 RFID 방식의 교통카드, 렌트카에서 가격정보를 읽는 마트코, 백화 매장내의 아티, ATM 기기, 공항/철도 관리 등 다양한 분야에서 사용되고 있다.[1]

하지만 기존의 사물인터넷 관련 연구는 사용자의 편의성에 맞춰진 서비스들이 대부분이다. 이러한 서비스는 사용자의 편의성을 고려한 서비스를 주로 제공하기 때문에 에너지 소비효율성에 대한 고려가 부족하다.[3]

본 논문은 실내기기의 대기전력을 주변 환경 상태에 따라 동적으로 관리 할 수 있는 에너지 효율 최적화 알고리즘을 제안한다. 실내에 장착된 센서는 실내 환경을 감지하여와 라디알리즘과 같은 가동 도를 알고리즘을 도출한다. 이를 통해 실내기기를 제어하여 필요한 대기전력을 절약하는 방법을 제시한다.

본 논문의 구성은 다음과 같다. 1장에서는 본 논문과 관련한 연구에 대해 소개한다. 2장에서는 본 논문의 제안에 있어 시스템의 구성도 및 에너지 관리 최적화 시스템의 알고리즘을 설명한다. 3장에서는 알고리즘 시나리오별 성능분석을 평가하고, 마지막 4장에서는 결론을 맺는다.

2. 관련 연구

2.1 사물인터넷

사물인터넷(Internet of Things)은 사물에 센서들을 부착하여 관련된 정보를 사물과 사물 또는 사용자와 사물에서 정보를 수집하고, 이를 통해 사용자의 기능에 맞게 서비스를 제공할 수 있는 네트워크 진행이다. 이 기술은 사물과 사물의 정보를 수집하고, 이를 통해 사용자의 기능에 맞게 서비스를 제공할 수 있는 네트워크 진행이다. 여기서 사물은 가전제품, 스마트 기기들 대표적인 기기들로 마다.[1]

2.2 스마트 그리드

스마트 그리드(Smart Grid)는 IT와 전력계통의 기술을 융합한 지능형 전력망으로 에너지 효율을 최적화한 전력망의 전환을 진행한 형태이다. 스마트 그리드는 기존의 단방향 전력배송 방식을 바꾸고, 사물인터넷과 연계하여 실시간 감시된 에너지 소비를 최적화시킨다. 이 기술은 사용자의 전력요청에 따라 에너지 효율을 최적화할 수 있는 스마트 그리드의 컨트롤러를 제안한다. 그 결과, 이러한 기술은 효율성과 안전성을 높이는 데 기여할 것으로 기대된다. [4]
2.3. 대기전력에 따른 소비에너지

대기전력은 전력비용의 주요원으로 인식되어있으며 한국은 가정마다 사용되는 전력량의 증가에 따라 대기전력의 비중이 크게 증가하였다. 그만큼 낭비되는 전력이 많다는 것이다. (표 1)은 현재 국내에서 가장 많이 사용되는 대기전력 대비 대기전력의 비율을 추정한 결과이다. 소비전력 대비 대기전력의 비율은 측정 시기별로 다르지만 약 6.65~9.45%로 상당한 수준의 낭비가 발생하고 있다. 이 대기전력 비율은 대가족이고 전자기기 구입시기와 오래된 가정임을 대기전력의 낭비가 설명한다. [2]

<table>
<thead>
<tr>
<th></th>
<th>전기사용량 (kWh)</th>
<th>대기전력량 (kWh)</th>
<th>비율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013.05</td>
<td>202</td>
<td>19.08</td>
<td>9.45</td>
</tr>
<tr>
<td>2013.08</td>
<td>381</td>
<td>27.94</td>
<td>7.33</td>
</tr>
<tr>
<td>2012.02</td>
<td>306</td>
<td>20.35</td>
<td>6.65</td>
</tr>
</tbody>
</table>

따라서 본 논문에서도 비용은 대기전력의 낭비를 줄이기 위해 산업 환경을 고려한 알고리즘을 제안하고 적용시 소비전력은 분석한다.

3. 제안방안

3.1 에너지관리 최적화 구현 개념도

본 논문에서 제안하는 에너지관리 개념도는 (그림 1)과 같이 제안한다. 서비스와 클라이언트 형태로 구성되어 있으며 서비스는 사용자의 스마트폰에서의 요건을 따라 수동적으로 실내의 기기를 제어한다. 또한 환경센서를 이용하여 실내의 환경상태정보를 확인하고 에너지 관리 최적화 알고리즘을 통해 실내의 기기를 제어한다.

(그림 1) EMS Smart Home 개념도

3.2 에너지 관리 최적화 알고리즘

본 논문에서 제안하는 에너지 관리 최적화 알고리즘은 실내의 장착된 센서를 통해 알고리즘에 필요한 파라미터 값을 확인한다. (표 2)는 알고리즘에 사용되는 센서의 용도가 그리고 없을 수 있는 파라미터에 대하여 성의하였다. P_Lux(조도)는 실내의 조도센서를 통해 확인하는 조도 파라미터로 LED와 블라인드 제어에 관여한다. P_Temperature(온도)는 실내의 온도센서를 통해 확인하는 온도 파라미터로 에어컨 제어에 관여한다. P_Humidity(습도)는 실내 온도 센서를 통해 확인하는 습도 파라미터로 에어컨 제어에 관여한다.

<table>
<thead>
<tr>
<th>센서</th>
<th>용도</th>
<th>알고리즘 파라미터</th>
</tr>
</thead>
<tbody>
<tr>
<td>조도 센서</td>
<td>조도 감지</td>
<td>P_Lux(조도)</td>
</tr>
<tr>
<td>온도센서</td>
<td>온도 감지</td>
<td>P_Temperature(온도)</td>
</tr>
<tr>
<td>센서</td>
<td>습도 감지</td>
<td>P_Humidity(습도)</td>
</tr>
</tbody>
</table>

센서를 통해 실내의 파라미터 값을 얻어오게 에너지 관리 최적화 알고리즘을 통해 실내의 기기를 제어된다. 아래는 (그림 2)는 알고리즘을 코드 형태로 표현한 것이 다. 알고리즘이 시작되면 필요한 파라미터인 P_Lux(조도), P_Temperature(온도), P_Humidity(습도), Season(계절)을 확인한다. 여기서 기존파라미터와 다른 Season(계절) 파라미터는 센서를 통해서 가져 오지 않고 프로그래밍을 이용한 계절주기에 따라 값을 나타낸다. 그 후 각 파라미터를 통해 기기를 작동시키게 된다. P_Lux(조도)는 900~10000의 기준 값은 가진다. 기준 값에 해당할 경우 적절히 높다고 판단하여 조명을 켜고 블라인드를 옮긴다. 같은 충족하지 못할 경우 조명을 켜고 블라인드를 내린다. P_Temperature(온도)와 P_Humidity(습도)는 Season(계절)을 통해 기준 값이 결정된다. 에어컨 경우 P_Temperature(온도)는 25~28도로 기준 값으로 가진다. P_Humidity(습도)는 습도상승율 기준 20~40%로 기준으로 한다. 에어컨에 해당하는 두 값이 적절할 경우 에어컨을 작동시킨다. 일반 그외의 경우에는 에어컨동작을 정지시킨다. 조명인 경우 P_Temperature(온도)는 18~20도로 기준 값을 가진다. P_Humidity(습도)는 상단습도 기준 20~40%로 기준으로 한다. 에어컨에는 해당하는 두 값이 적절할 경우 에어컨을 작동시킨다. 일반 그외의 경우에는 히터의 동작을 정지시킨다. 에너지 관리 최적화 알고리즘은 지속적으로 변화하는 파라미터에 적응하여 동적으로 실내 기기의 동작에 반영시킨다.
START Energy Algorithm

READ P_{Lux}, P_{Temperature}, P_{Humidity}, Season

if(900<P_{Lux}<1000)
 (LED off, Blind up)
else if(P_{Lux}<900)
 (LED on, Blind down)

switch(season){
 case: winder
 if(20<P_{Humidity}<40
 &&
 18<P_{Temperature}<20)
 (Heater on)
 else
 (Heater off)
 break;
 case: summer
 if(20<P_{Humidity}<40
 &&
 26<P_{Temperature}<28)
 (Aircon on)
 else
 (Aircon off)
 break;
}

(그림 2) 에너지 관리 시스템 알고리즘

알고리즘에 이용되는 P_{Lux}(조도)의 값은 900~1,000으로(표 3)은ANSI(American National Standard Institute)에서 정한 조도 기준을 참고하였다.[5]

<!-- Table 3: 조도에 따른 조도적정기준

<table>
<thead>
<tr>
<th>조도(hux)</th>
<th>조도적정기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>보름달, 밤은 밤</td>
</tr>
<tr>
<td>1</td>
<td>흐름</td>
</tr>
<tr>
<td>400</td>
<td>천여름, 해님</td>
</tr>
<tr>
<td>100,000</td>
<td>인공조명, 우수한 조명의 사무실</td>
</tr>
<tr>
<td>1,000</td>
<td>인공조명, 평균적 거실</td>
</tr>
<tr>
<td>100</td>
<td>거리조명</td>
</tr>
<tr>
<td>5~30</td>
<td></td>
</tr>
</tbody>
</table>

-->

4. 성능분석 및 구현결과

본 논문에서 제안하는 에너지 관리 최적화 알고리즘의 서비스 시나리오를 통해 성능분석결과를 도출하였다. 성능분석의 시나리오는 다음에 오랜 시간 머무르는 주말을 대상으로 테스트하였다. 일반적으로 에너지를 소모한 경우와 제안된 알고리즘을 적용했을 경우로 나누어 진행하였다. 처음은 알고리즘의 조도를 통해 LED 조명에서 절약 할 수 있는 소비전력의 측정한다. (표 5)은 에너지 소비가 필요해야 하는 시간이다. 이 시간 동안에는 반드시 에너지를 소비해야 한다고 가정한다. 조명이 필요한 시간은 약 16시간으로 가정하였다. 에너지가 필요한 경우는 여름7월을 기준으로 약 6시간으로 가정하였다.

<!-- Table 5: 주말 에너지소비 시간

<table>
<thead>
<tr>
<th>일</th>
<th>시간</th>
<th>소비 전력</th>
</tr>
</thead>
<tbody>
<tr>
<td>일요일</td>
<td>오전8시 ~ 오전12시(약 16시간)</td>
<td>480Wh</td>
</tr>
<tr>
<td>휴무</td>
<td>오후1시~오후7시(약 6시간)</td>
<td>7,710kWh</td>
</tr>
</tbody>
</table>

-->

위와 같은 시나리오를 이용하여 야간의 소비에너지의 측정하였다. (표 5)의 소비전력의 수치는 테스트로 사용한 조명과 에너지 전력의 소비전력을 방편하였다. 조명으로 사용한 장비는 소비전력 30W의 LED전등을 이용하였다. (그림 3)의 LED의 시간당 전력을 그대로 나타내었다. LED전등은 조도를 통하여 제어되며, 조명의 동작시간은 일반적인 제어와 달리 월 또는 한 달에 한정하게 된다. 그러므로 에너지 소비는 전력은 약 30W*16h=480Wh이다.

LED는 제어하는 알고리즘을 통하여 제공할 경우 낭비가 많을 경우 약 16시간 동안 조명이 작동시간을 절약하기 때문에 총 소비전력은 전력은 30W*10h=300Wh이다. 그 외에 실내의 에너지 관리 최적화를 통해 가장 적절한 상태로 상태가 맞춰질 경우 LED에서 절약할 수 있는 대기 전력은 약 180W이다.
2015년 춘계학술발표대회 논문집 제22권 제1호(2015. 4)

(그림 3) 시나리오(LED) 에너지 소비단위(단위 : W)

다른 파라미터인 계절, 온도, 습도를 통해 절약할 수 있는 소비에너지지 선회하였다. 측정기간은 여름으로 실내 적정온도는 26°C28도이다. 사용한 에어컨은 1285kW의 소비전력 가진다. (그림 4)는 7월 동안 에어컨의 소비전력 평균을 비교한 그래프이다. 일반적 에어의 경우 에어컨의 기동시간은 약 6시간으로 1,285kW*6h=7,710kWh의 에너지를 소비한다. 제한된 알고리즘을 통해 에어컨의 기동시간을 설정되어 있는 온도에 도달하면 기기를 정지시키는 기능을 가지고 있다. 7월 한 달 동안 매일 1시간씩 적정온도에 도달하여 에어컨이 가동이 정지해 있음 경우 절약할 수 있는 에너지는 1,285kW*5h=6,425kWh 만큼을 절약 할 수 있다.

(그림 4) 시나리오(에어컨) 에너지 소비단위(단위 : kW)

5. 결론

최근 전력수요가 급증하는 환경에 따라 전력산업에서 에너지 사용에 대한 정책이 중요하게 되고 있다. 본 논문에서는 남녀는 대기전력을 관리할 수 있도록 실내 환경 파라미터를 이용한 실내 에너지 관리 최적화 알고리즘을 통해 납비되는 소비전력을 줄이는 방법을 제안하였다.

최적화 알고리즘은 실내 환경에 따라 동적으로 기기를 제어하도록 설계되었으며, 구성한 매개 환경설정을 이용하는 에너지 관리 최적화 알고리즘 방식을 통해 단순히 기기를 제어하는 것이 아닌 환경의 변화와 필요에 따라 제어