M. leprae의 특이 phenolic glycolipid-1 (PGL-1)를 이용한 탈수초화의 검정

김지영* · 사영희* · 홍성갑**
*연세대학교 · **목원대학교

Identification of Demyelination using *M. leprae*-specific phenolic glycolipid-1 (PGL-1)

Ji-Young Kim*, Young-Hee Sa*, and Seong-Karp Hong**

1Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea.
2Division of Bio and Health Sciences, Mokwon University, Daejeon, South Korea.
E-mail: karp@mokwon.ac.kr

요 약
탈수초화를 위해 쥐의 배아(임신 16일)의 수관세포와 뉴런 세포가 척수신경절로 부터 in vitro 시스템에서 배양되었다. 항 유사분열제로 첨가된 분리 정제된 척수신경절 세포와 분리 정제된 수관세포가 공동배양 배양되었고 배양되었고 수초화 과정이 구축되었다. 이렇게 형성된 공동 배양에 *M. leprae*-specific phenolic glycolipid-1 (PGL-1)을 처리하고 myelin basic protein (MBP)의 항체를 이용하여 탈수초화가 형성되었음을 확인하였다.

ABSTRACT

For myelination, Schwann cells and neuron cells from dorsal root ganglion (DRG) of rat embryos (E16) were cultured in vitro system. The purified DRG cells with anti-mitotic agents and purified Schwann cells were cocultured and then accomplished myelination processing. Treatment of *M. leprae*-specific phenolic glycolipid-1 (PGL-1) into this coculture system was performed and then accomplished demyelination. Therefore, we identified demyelination processing using antibody of myelin basic protein (MBP).

Keyword
demyelination, phenolic glycolipid-1, *M. leprae*, myelin basic protein

I. INTRODUCTION

The study of Schwann cell, Neuronal cell, and myelination has been facilitated by the availability to isolate and establish pure population of primary Schwann cells. Moreover, mice serve as an important model for the study of Schwann cell research. The specialized source of neurons from nonneuronal cells were provided in Dorsal root ganglia [1]. Adult mammalian DRG neuron cells can survive and regenerate in culture [2, 3, 4]. There are several researches on purified populations of these neurons. Coculture of purified DRG neurons and Schwann cells can be used in myelin formation.

The most widely used method for preparing primary Schwann cell culture uses DRG as the primary source of Schwann cells. The procedure
is very simple and produces a highly purified population of Schwann cells in a short time. The method has also been used to prepare Schwann cells from mouse embryos.

In this study, we performed a purified population of myelination by coculture of DRG neuronal cells and Schwann cells. The purified DRG cells with anti-mitotic agents and purified Schwann cells were cocultured and then accomplished myelination processing. Treatment of M. leprae-specific phenolic glycolipid-1 (PGL-1) into this coculture system was performed and then accomplished demyelination. Therefore, we identified demyelination processing using antibody of myelin basic protein (MBP).

II. MATERIALS AND METHODS

A. preparation of embryonic DRG

Embryos of mouse were decapitated with spring scissors and transferred the head to a pre-labeled 1.5 mL Eppendorf tube prepared. The tips of spring scissors vertically were inserted into the rostral end, just anterior to the vertebral column and began making 3-4 sequential cuts from rostral to caudal (from head to tail) direction. The ganglia from the dorsal root starting from one end of the spinal cord were pinched off. All the ganglia (approximately 37–42 ganglia/spinal cord/embryo) were removed and repeated with the step for all the spinal cords. The 1.5 mL of 0.25% trypsin were added to each dish and placed the dishes into a 37℃ air incubator for 15–20 min. It were added with 10 mL of L-15/10% FBS into each tube and centrifuged the ganglia at 50 g for 5 min. The pellet was resuspend in trypsin-collagenase solution and incubated at 37 ℃ for 30 min. The reaction was stopped by adding Schwann cell medium and the cells were pelleted as above. The pellet was resuspended in 1 ml of anti-Thy 1.2 antibody solution and incubated 30 min at 37 ℃. After centrifugation, pellet was resuspended in 1 ml of rabbit complement solution and incubated 30 min at 37℃. Cells were plated onto a poly-L-lysine coated 100 mm culture dish in Schwann cell medium and incubated 30 min at 3 7℃. Next day, bipolar, spindle-shaped Schwann cells were changed the medium to N2-Schwann cell growth medium. Neuregulin and Forskolin contained in the growth medium start to stimulate Schwann cell proliferation while growth of any contaminating fibroblasts is suppressed under the serum-free condition. Neurons should die off within 2 days in the absence of NGF in the medium. After 6-7 days, the cells were replated onto new poly-L-lysine-coated plates at a density of 1 × 10⁶ cells/100 mm plate.

D. addition of anti-mitotic cocktail

Cultures were incubated at 37 ℃, with 5% CO₂. 24 h later, 150 mL of NGF stock solution (40 mM of 5-fluorodeoxyuridine and uridine, 1 mM Arabinofur-anosyl Cytidine (Ara C, Sigma-Aldich, Saint Louis, MO) in NG medium) was added into each well to make the final concentration of 5-fluorodeoxyuridine/uridine 20 mM. Cultures were incubated at 37 ℃ in a 5% CO₂ incubator. After 72 hours, 2/3 of the NGF stock solution was changed to NG medium and the cultures were re-fed every 2 days with NG medium. After three medium changes, the neurons were ready for the Schwann cell addition.

E. addition of Schwann cells into DRG neuronal cell culture

Schwann cells were digested and washed once
Identification of Demyelination using *M. leprae*-specific phenolic glycolipid-1 (PGL-1)

with DMEM (Invitrogen, Carlsbad, CA) containing 10% FBS, and then resuspended in C medium (MEM, 10% FBS, 2mM l-glutamine, 0.4% glucose, and 50 ng/mL 2.5 S NGF). 100 mL (approximately 200,000 cells) of Schwann cells was added to each of the DRG cultures in C media. After 3 days, the co-cultures were supplemented with 50 mg/mL of ascorbic acid to initiate basal lamina formation and myelination. Myelination was allowed to proceed for up to 21 days. The process of myelination was observed and recorded under phase contrast microscope.

F. Immunocytochemistry

To observed the formation of the myelin, the DRG neuron/SC co-cultures (14 days after initiation myelin formation) were then labeled with primary antibodies, which included monoclonal antibody (mAb) against myelin basic protein (MBP). After three washes with PBS, the coverslips were further incubated with Alexa Fluor 488 mouse anti-rabbit IgG and Alexa Fluor 594 goat anti-mouse IgG (Invitrogen, Carlsbad, CA) for 60 min at room temperature. After a final wash in PBS, the slides were mounted with mounting fluid (DAKO Ltd., Carpenteria, CA) and visualized under a fluorescence microscope (Olympus, Tokyo, Japan). The images were digitally recorded and processed with Image-Pro Plus (Media Cybernetics, Atlanta, GA).

III. RESULTS AND CONCLUSIONS

Processing for coculture of Schwann cells and neuronal cells for myelination from DRG of rat embryos was described in Fig 1.

This procedure contains following four steps: first step of suspension of the embryonic dorsal root ganglion cells [4], second step of addition of anti-mitotic cocktail [1], third step of purification of dorsal root cells [4], and fourth step of addition of Schwann cells to dorsal root ganglion cells [1].

![Fig. 1. Procedure for coculture of Schwann cells and neuronal cells for myelination from rat embryos.](image)

To identify the myelination formed by coculture of DRG cells and neuronal cells, cultured cells were labeled with monoclonal antibody (mAb) against myelin basic protein (MBP) and were observed by fluorescent microscope. The green-fluorescent regions represent myelinated cells (Fig. 3 A).
Fig. 3. Identification of myelination which is formed by coculture of DRG neuronal cells and Schwann cells (A: fluorescent microscope, B: optical microscope)

Through this study, we accomplished a purified population of myelination through this procedure and identified myelination basic protein using antibody of myelin basic protein. After treatment of *M. leprae*-specific phenolic glycolipid-1 (PGL-1) into this coculture system were also identified demyelination of this coculture in vitro system because of absence of monoclonal antibody (mAb) against myelin basic protein (MBP).

ACKNOWLEDGMENTS

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0024912) and a faculty research grant of Yonsei University College of Medicine for 2014(6-2014-0045).

REFERENCES

