End-to-end Document Summarization using Copy Mechanism and Input Feeding

Copy Mechanism과 Input Feeding을 이용한 End-to-End 한국어 문서요약

  • Published : 2016.10.07

Abstract

본 논문에서는 Sequence-to-sequence 모델을 생성요약의 방법으로 한국어 문서요약에 적용하였으며, copy mechanism과 input feeding을 적용한 RNN search 모델을 사용하여 시스템의 성능을 높였다. 인터넷 신문기사를 수집하여 구축한 한국어 문서요약 데이터 셋(train set 30291 문서, development set 3786 문서, test set 3705문서)으로 실험한 결과, input feeding과 copy mechanism을 포함한 모델이 형태소 기준으로 ROUGE-1 35.92, ROUGE-2 15.37, ROUGE-L 29.45로 가장 높은 성능을 보였다.

Acknowledgement

Grant : (엑소브레인-1세부) 휴먼 지식증강 서비스를 위한 지능진화형 WiseQA 플랫폼 기술 개발

Supported by : 정보통신기술진흥센터