Using CNN-LSTM for Effective Application of Dialogue Context to Emotion Classification

CNN-LSTM을 이용한 대화 문맥 반영과 감정 분류

  • Published : 2016.10.07

Abstract

대화 시스템에서 사용자가 나타내는 발화에 내재된 감정을 분류하는 것은, 시스템이 적절한 응답과 서비스를 제공하는데 있어 매우 중요하다. 본 연구에서는 대화 내 감정 분류를 하는데 있어 직접적, 간접적으로 드러나는 감정 자질을 자동으로 학습하고 감정이 지속되는 대화 문맥을 효과적으로 반영하기 위해 CNN-LSTM 방식의 딥 뉴럴 네트워크 구조를 제안한다. 그리고 대량의 구어체 코퍼스를 이용한 사전 학습으로 데이터 부족 문제를 완화하였다. 실험 결과 제안하는 방법이 기존의 SVM이나, 단순한 RNN, CNN 네트워크 구조에 비해 전반전인 성능 향상을 보였고, 특히 감정이 있는 경우 더 잘 분류하는 것을 확인할 수 있었다.

Acknowledgement

Supported by : 한국연구재단