Research about SMT Performance Improvement Through Automatic Corpus Expansion

말뭉치 자동 확장을 통한 SMT 성능 향상에 대한 연구

  • Published : 2016.10.07

Abstract

현재 자동번역에는 통계적 방법에 속하는 통계기반 자동번역 시스템(SMT)이 많이 사용되고 있지만, 학습 데이터로 사용되는 대용량의 병렬 말뭉치를 수동으로 구축하는데 어려움이 있다. 본 연구의 목적은 통계기반 자동번역의 성능을 향상시키기 위해 기존 다른 언어쌍의 말뭉치와 SMT 자동번역 기술을 이용하여 대상이 되는 언어쌍의 SMT 병렬 말뭉치를 자동으로 확장하는 방법을 제안한다. 제안 방법은 서로 다른 언어 B와 C의 병렬 말뭉치를 얻기 위해, A와 B의 SMT 자동번역 시스템을 구축하고 기존의 A-C 말뭉치의 A를 SMT를 통해 B로 번역하여 B와 C의 말뭉치를 자동으로 확장한다. 실험을 통해 확장한 병렬 말뭉치가 통계기반 자동번역 시스템의 성능을 향상시킬 수 있음을 확인한다.

Acknowledgement

Grant : 지식증강형 실시간 동시통역 원천기술 개발

Supported by : 정보통신기술진흥센터