Looking for Direct Evidence of Triggered Star Formation: Gas Kinematics

  • Published : 2016.10.12


Stellar wind and radiation pressure from massive stars can trigger the formation of new generation of stars. The sequential age distribution of stars, the morphology of cometary globules, and bright-rimmed clouds have been accepted as evidence of triggered star formation. However, these characteristics do not necessarily suggest that new generation of stars are formed by the feedback of massive stars. In order to search for any physical connection between star forming events, we have initiated a study of gas and stellar kinematics in NGC 1893, where two prominent cometary nebulae are facing toward O-type stars. The spectra of gas and stars in optical and near-infrared (NIR) wavelength are obtained with Hectochelle on the 6.5m MMT and Immersion GRating INfrared Spectrograph on the 2.7m Harlan J. Smith Telescope at McDonald observatory. In this study, the radial velocity field of gas across the cluster is investigated using $H{\alpha}$ and [N II] ${\lambda}$ 6584 emission lines, and that of the cometary nebula Sim 130 is also probed using 1-0 S(1) transition line of $H_2$. We report a distinctive velocity field of the cometary nebulae and many ro-vibrational transitions of $H_2$ even at high energy levels in the NIR spectra. These properties indicate the interaction between the cometary nebulae and O-type stars, and this fact can be a clue to triggered star formation in NGC 1893.