Demyelination of Myelinated Neuronal cells by Infection of Herpes Simplex Virus-1

Hyun Joo Kim*, Ji-Young Kim*, Young-Hee Sa*, and Seong-Karp Hong**

1Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea.
2Division of Bio and Health Sciences, Mokwon University, Daejeon, South Korea.
E-mail: karp@mokwon.ac.kr

ABSTRACT

Neuronal cells and Schwann cells from dorsal root ganglion (DRG) in embryos of rat were isolated and cultured in vitro respectively. The purified neuronal cells added with anti-mitotic agents and purified Schwann cells were co-cultured and then accomplished myelination processing. This myelinated co-culture system was infected by herpes simplex virus-1 and then accomplished demyelination processing in this myelinated co-culture. We identified myelination and demyelination processing using antibody of neuropeptide Y meaning presence of myelinated neuron.

Keyword
demyelination, myelination, neuropeptide Y, herpes simplex virus-1

I. INTRODUCTION

Many viruses such as Theiler’s virus, mouse hepatitis virus (MHV), corona, measles, and Herpes simplex virus-1 are known as cause of inducing demyelination (meaning destruction of myelination) in nervous system of mice. Especially Herpes simplex virus-1 infection induces a demyelinating encephalomyelitis in the central nervous system of mice. Mice and rats are used as an important model for the study of myelination and demyelination research in vitro and in vivo. Generally adult mammalian DRG neuron cells can survive and regenerate in culture. In vitro myelination had been established by co-culturing with pure populations of primary
Schwann cells and primary neuronal cells. These pure populations of primary Schwann cells and primary neuronal cells were driven from DRG of rat embryos. This method produced highly purified populations of Schwann cells and neuronal cells faster than any other conventional method.

From this research, we constructed a population of myelinated cells with co-culture of neuronal cells and Schwann cells from DRG. After this myelinated cells were infected with Herpes simplex virus-1 and processing of demyelination was progressed. We could identify and distinguish myelination and demyelination processing using antibody of neuropeptide Y which represented as myelinated cells.

II. MATERIALS AND METHODS

A. preparation of embryonic DRG

Embryos of mouse were decapitated with spring scissors and transferred the head to a pre-labeled 1.5 mL Eppendorf tube prepared. The tips of spring scissors vertically were inserted into the rostral end, just anterior to the vertebral column and began making 3-4 sequential cuts from rostral to caudal (from head to tail) direction. The ganglia from the dorsal root starting from one end of the spinal cord were pinched off. All the ganglia (approximately 37-42 ganglia/spinal cord/embryo) were removed and repeated with the step for all the spinal cords. The 1.5 mL of 0.25% trypsin were added to each dish and placed the dishes into a 37 ℃ air incubator for 15-20 min. It were added with 10 mL of L-15/10% FBS into each tube and centrifuged the ganglia at 50 g for 5 min. The pellet was resuspended in trypsin-collagenase solution and incubated at 37 ℃ for 30 min. The reaction was stopped by adding Schwann cell medium and the cells were pelleted as above. The pellet was resuspended in 1 ml of anti-Thy 1.2 antibody solution and incubated 30 min at 37 ℃. Cells were plated onto a poly-L-lysine coated 100 mm culture dish in Schwann cell medium and incubated 30 min at 37 ℃. Cells were plated onto a poly-L-lysine coated 100 mm plate in Schwann cell medium and incubated 30 min at 37 ℃. Cells were plated onto a poly-L-lysine coated 100 mm plate in Schwann cell medium and incubated 30 min at 37 ℃. Cells were plated onto a poly-L-lysine coated 100 mm plate in Schwann cell medium and incubated 30 min at 37 ℃. Cells were plated onto a poly-L-lysine coated 100 mm plate in Schwann cell medium and incubated 30 min at 37 ℃. Cells were plated onto a poly-L-lysine coated 100 mm plate in Schwann cell medium and incubated 30 min at 37 ℃. Cells were plated onto a poly-L-lysine coated 100 mm plate in Schwann cell medium and incubated 30 min at 37 ℃. Cells were plated onto a poly-L-lysine coated 100 mm plate in Schwann cell medium and incubated 30 min at 37 ℃.

B. suspension of the embryonic dorsal root ganglion cells

After 18 hr, plating of the dissociated DRG was replaced the medium with 2 mL of N2/NGF. Under the serum-free condition, fibroblast growth is suppressed while axon-associated Schwann cell precursors continue to proliferate. There is no need to change the medium. After 6-7 days, Schwann cell-neuron network forming axon bundles was transferred into culture medium.

C. purification of Schwann cells.

After collecting Schwann cell-neuron networks, the cells were pelleted by centrifugation at 200 g for 5 min.

The pellet was resuspend in trypsin-collagenase solution and incubated at 37 ℃ for 30 min. The reaction was stopped by adding Schwann cell medium and the cells were pelleted as above. The pellet was resuspended in 1 ml of anti-Thy 1.2 antibody solution and incubated 30 min at 37 ℃. After centrifugation, pellet was resuspended in 1 ml of rabbit complement solution and incubated 30 min at 37 ℃. Cells were plated onto a poly-L-lysine coated 100 mm culture dish in Schwann cell medium and incubated 30 min at 37 ℃. Next day, bipolar, spindle-shaped Schwann cells were changed the medium to N2-Schwann cell growth medium. Neuregulin and Forskolin contained in the growth medium start to stimulate Schwann cell proliferation while growth of any contaminating fibroblasts is suppressed under the serum-free condition. Neurons should die off within 2 days in the absence of NGF in the medium. After 6-7 days, the cells were replated onto new poly-L-lysine coated plates at a density of 1 × 10⁶ cells/100 mm plate.

D. addition of anti-mitotic cocktail

Cultures were incubated at 37 ℃, with 5% CO₂. 24 h later, 150 mL of NGF stock solution (40 mM of 5-fluorodeoxyuridine and uridine, 1 mM Arabinofuranosyl Cytidine (Ara C, Sigma-Aldich, Saint Louis, MO) in NG medium) was added into each well to make the final concentration of 5-fluorodeoxyuridine/uridine 20 mM. Cultures were incubated at 37 ℃ in a 5% CO₂ incubator. After 72 hours, 2/3 of the NGF stock solution was changed to NG medium and the cultures were re-fed every 2 days with NG medium. After three medium changes, the neurons were ready for the Schwann cell addition.

E. addition of Schwann cells into DRG neuronal cell culture

Schwann cells were digested and washed once with DMEM (Invitrogen, Carlsbad, CA) containing...
10% FBS, and then resuspended in C medium (MEM, 10% FBS, 2mM l-glutamine, 0.4% glucose, and 50 ng/mL 2.5 S NGF). 100 mL (approximately 200,000 cells) of Schwann cells was added to each of the DRG cultures in C media. After 3 days, the co-cultures were supplemented with 50 mg/mL of ascorbic acid to initiate basal lamina formation and myelination. Myelination was allowed to proceed for up to 21 days. The process of myelination was observed and recorded under phase contrast microscope.

F. Immunocytochemistry
To observed the formation of the myelin, the DRG neuron/SC co-cultures (14 days after initiation myelin formation) were then labeled with primary antibodies, which included monoclonal antibody (mAb) against neuropeptide Y. After three washes with PBS, the coverslips were further incubated with Alexa Fluor 488 mouse anti-rabbit IgG and Alexa Fluor 594 goat anti-mouse IgG (Invitrogen, Carlsbad, CA) for 60 min at room temperature. After a final wash in PBS, the slides were mounted with mounting fluid (DAKO Ltd., Carpenteria, CA) and visualized under a fluorescence microscope (Olympus, Tokyo, Japan). The images were digitally recorded and processed with Image-Pro Plus (Media Cybernetics, Atlanta, GA).

III. RESULTS AND CONCLUSIONS

This procedure contains following four steps: first step of suspension of the embryonic dorsal root ganglion cells, secondstep of addition of anti-mitoticcocktail, third step of purification of dorsal root cells, and fourth step of addition of Schwann cells to dorsal root ganglion cells.

As a result of this study, for formation of myelination, Schwann cells and neuronal cells, respectively, were prepared and cultured from DRG of rat embryos (E 16 day) (Figure 1).

To identify and distinguish myelination and demyelination processing, population of cells were labeled with monoclonal antibody against neuropeptide Y and observed by fluorescent microscope. Population of myelinated cells represent fluorescent spots due to monoclonal antibody against neuropeptide Y which binds myelinated proteins. On the other hand, population of demyelinated cells did not because of absence of monoclonal antibody against neuropeptide Y (Figure 2).

ACKNOWLEDGMENTS

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2016R1A2B4016552) and a faculty research grant...
REFERENCES

