X-ray Resonant Magnetic Scattering Study of Magnetic Proximity Effect in Pd/Co/Pd and Pt/Co/Pt Trilayers

Dong Ryeol Lee1*, Dong-Ok Kim1, Ilwan Seo1, Yongseong Choi2, Jun Woo Choi3

1Department of Physics, Soongsil University
2Advanced Photon Source, Argonne National Laboratory, USA
3Center for Spintronics, Korea Institute of Science and Technology

We present an element and depth resolved x-ray resonant magnetic scattering (XRMS) study of the magnetic proximity effect in nonmagnetic/ferromagnetic/nonmagnetic (NM/FM/NM) trilayers. In specific, the top and bottom Pd(Pt) moments in Pd/Co/Pd and Pt/Co/Pt thin films, which is the archetypical film structure in spin-orbitronic devices, have been measured with x-ray magnetic circular dichroism (XMCD) and x-ray resonant magnetic reflectivity (XRMR) at the Pd L3 (3.174 keV) and Pt L3 (11.56 keV) edges. We found from a quantitative analysis of XRMS curves that the induced Pd(Pt) magnetic moments at the top Co/Pd(Pt) interface are significantly larger than the Pd(Pt) moments at the bottom Pd(Pt)/Co interface.[1] Since interfacial spin transport properties in the NM/FM/NM structure are known to be largely affected by the magnetic proximity effect, such asymmetry in magnetic proximity effects could be important for understanding spin transport characteristics in FM/NM systems and its potential application to spin devices.

Reference