Indoor Temperature Estimation System for Reduction of Building Energy Consumption

Jeong-Hoon Kim*, Sung Hyun You*, Sang Su Lee*, Kwan-Soo Kim*, and Choon-Ki Ahn*
Dept. of Electrical and Computer Engineering, Korea University

Abstract
In this paper, a new strategy for estimating building temperature based on the modified resistance capacitance (R–C) network thermal dynamic model is proposed. The proposed method gives accurate indoor temperature estimation using minimum variance finite impulse response filter. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.

1. Introduction
The prediction of energy consumption is the most complex issue of the smart grid projects. Daily building energy consumption depends on the randomness of occupant comfort and temperature changes [1–5]. However, the exact estimation of building appliance load is necessary to optimize energy consumption between electricity supply and electricity demand. Through smart meters, which are installed in many buildings nowadays, there are several opportunities to predict energy load more accurately for building appliances to improve energy consumption efficiency [6–7]. Building energy load prediction is a difficult issue. In particular, the Kalman filter is used for estimating the building energy consumption. The building appliance load model plays an important role in understanding and estimating building energy consumption [8–9].

However, the Kalman filter may show poor performance in an unexpected condition. One of the alternative method for Kalman filter is finite impulse response (FIR) filter that does not use infinite impulse response (IIR) estimation [10–15]. Because IIR estimation, such as the Kalman filter, uses all past input and output data to calculate the estimated state, poor estimation performance or divergence phenomenon may occur due to the incorrect initial state in formation, modeling, and computational error accumulation. However, with its given structural characteristics, FIR estimation can prevent the error accumulation problem, because it estimates the state only with recent finite measurement information. Furthermore, the advantages of FIR guarantee bounded-input bounded-output (BIBO) stability and robustness against temporary model uncertainties, such as incorrect noise information and quantization effects [16–24].

The dynamics of a building are slow and disturbances are unavoidable (e.g., thermal noise of appliances and occupants). Because of the occupant’s comfort requirement as well as the limited capacity of appliances, constrained control is required. The goal of our paper is to predict weather in order to make use of the thermostorage capacity of a building using FIR filter.

The rest of this paper is organized as follows. Section II provides indoor temperature estimation based on the resistance – capacitance (R – C) network model. The experiment results gives robustness of the proposed method in Section III. Finally we conclude our paper in Section IV.

2. Indoor Temperature Estimation
In this paper, the experiment is carried out in
the test bed. The walls of the test bed are heavy enough to interrupt the heat flow of neighbor rooms, and the windows of the test bed are too thin to interrupt the heat flow of outdoor temperature. Therefore, the influence of neighboring room temperature can be ignored when comparing the influence of outdoor temperature. Additionally, this test bed has fixed thermal noise from three computers and three residents. Because the activity patterns of residents are the same every day, this thermal noise can be used as a parameter. With these assumptions, the modified R-C network thermal model can be written as follows.

\[
 T_{in}(k+1) = T_{in}(k) + \alpha(T_{in} - T_{in}(k)) + \beta P_{HVAC}(k) + \gamma (\chi - T_{in}(k))
\]

Define the output state \(y(k) \) as the indoor temperature and the sampling time as 10 minutes. The discrete–time building R-C network thermal model can be written in the following simple state–space form:

\[
 x(k+1) = Ax(k) + Bu(k) + \alpha(k),
 y(k) = Cx(k) + Du(k),
\]

where

\[
 A = [1 - \alpha - \gamma], B = [\alpha \beta \gamma 2], C = 1, D = 0,
 x(k) = T_{in}, and u(k) = [T_{in}(k) \ P_{HVAC}(k)]^T.
\]

\(\alpha(k) \) denotes white Gaussian noise, and the numerical values. A, B and C can be calculated based on experiment data.

We can verify the accuracy of the R-C network model with different experiment data sets based on the parameter matrices. The state–space model of the R-C network thermal model can predict the indoor temperature of the test bed with the obtained parameters.

\[
 \hat{x}(k+1) = \hat{A}x(k) + \hat{B}u(k) + \alpha(k),
\]

\(\hat{x}, \hat{A}, \) and \(\hat{B} \) are the estimation value of indoor temperature, the accuracy of the model can be obtained by the mean squared error (MSE) \(\epsilon \), which is as follows:

\[
 \epsilon = \frac{1}{N} \sum \left| \hat{x}(k-1) - x(k-1) \right|^2.
\]

Even if the state–space model can provide more accurate indoor temperature estimation, modeling errors, which can cause poor estimation performance, still remain. In much of the literature, for the estimation of the temperature of a battery with a Kalman filter and electric circuits, a filtering method is proposed to improve the estimation performance. Therefore, a minimum variance finite impulse response (MVFIR) method is proposed in this section to decrease the accumulation of modeling and measurement errors.

The MVFIR filter is implemented to estimate indoor temperature with a horizon size of 10. With the experimental data, a horizon size of 10 for the FIR filter shows the best estimation performance and calculation time, the finite number of measurements is represented in terms of the state vector at current time \(k \) as follows:

\[
 Y(k-1) = \tilde{C}_{x}(k) + \tilde{B}_{y}U(k-1) + \tilde{G}_{t}W(k-1) + V(k-1)
\]

where

\[
 \begin{bmatrix}
 y^T(k-10) & y^T(k-9) & y^T(k-8) & \cdots & y^T(k-1)
 \end{bmatrix}^T,
\]

\[
 \begin{bmatrix}
 u^T(k-10) & u^T(k-9) & u^T(k-8) & \cdots & u^T(k-1)
 \end{bmatrix}^T,
\]

\[
 \begin{bmatrix}
 \alpha(k-10) & \alpha(k-9) & \alpha(k-8) & \cdots & \alpha(k-1)
 \end{bmatrix}^T,
\]

\[
 \begin{bmatrix}
 v^T(k-10) & v^T(k-9) & v^T(k-8) & \cdots & v^T(k-1)
 \end{bmatrix}^T.
\]

The MVFIR filter estimated state can be written as following equation with gain \(H_{\beta} \):

\[
 \hat{y}(k | k-1) = H_{\beta}(Y(k-1) - \tilde{B}_{y}U(k-1)).
\]

The filter gain can be written as follows:

\[
 H_{\beta} = (\tilde{C}_{x} \Xi_{10} \tilde{C}_{v})^{-1} \tilde{C}_{v} + 10 \Xi_{10},
\]

3. Experiment Results

In this section, we showed the performance of the proposed method and existing method (i.e. Kalman filter) via experiment result.

Figure 1 represents Real temperature and its...
estimation at DR level 0 signal for occupant over 30 days. During peak time, HEMS determine energy consumption same as previous pattern. Two estimated temperature results are similar with real indoor temperature. The Kalman filter shows good performance, but in 4.5 or 5.5 times in graph Kalman filter shows poor performance. Nevertheless, our proposed method shows better performance than Kalman filter method in peak time. In other words, the performance of both estimators worsened as the typical pattern of the occupant was modified. However, the MVFIR method demonstrated better performance in temperature prediction.

4. Conclusion
This paper evaluates a new approach to indoor temperature estimation, which is especially helpful for peak times. With the modified R-C network thermal model, a new approach employing MVFIR uses recent finite horizon measurement information and minimizes the estimation error variance to estimate indoor temperature. The modified R-C network thermal model and MVFIR were integrated in the HEMS to overcome difficulties of temperature estimation due to its random nature of turning on/off and energy reduction with the DR level. We implement the HEMS, which includes communication between the DR server and building HEMS to demonstrate its purposes in a test bed.

ACKNOWLEDGMENT
This work was supported in part by the Human Resources Program in Energy Technology through the Korea Institute of Energy Technology Evaluation and Planning (KETEP) within the Ministry of Trade, Industry, and Energy, South Korea, under Grant 2015403200610, in part by the Energy Efficiency and Resources Core Technology Program of the KETEP granted financial resource from the Ministry of Trade, Industry and Energy, South Korea, under Grant 2014201010290.

Reference

