Memory Attention-based Breakdown Detection for Natural Conversation in Dialogue System

대화 시스템에서의 자연스러운 대화를 위한 Memory Attention기반 Breakdown Detection

  • 이설화 (고려대학교 정보대학 컴퓨터학과) ;
  • 박기남 (고려대학교 정보대학 컴퓨터학과) ;
  • 임희석 (고려대학교 정보대학 컴퓨터학과)
  • Published : 2018.10.12

Abstract

대화 시스템에서 사람과 기계와의 모든 발화에서 발생하는 상황들을 모두 규칙화할 수 없기 때문에 자연스러운 대화가 단절되는 breakdown 현상이 빈번하게 일어날 수 있다. 이런 현상이 발생하는 이유는 다음과 같다. 첫째, 대화에서는 다양한 도메인이 등장하기 때문에 시스템이 커버할 수 있는 리소스가 부족하며, 둘째, 대화 데이터에서 학습을 위한 annotation되어 있는 많은 양의 코퍼스를 보유하기에는 한계가 있으며, 모델에 모든 대화 흐름의 히스토리를 반영하기 어렵다. 이런 한계점이 존재함에도 breakdown detection은 자연스러운 대화 시스템을 위해서는 필수적인 기능이다. 본 논문은 이런 이슈들을 해소하기 위해서 memory attention기반의 새로운 모델을 제안하였다. 제안한 모델은 대화내에 발화에 대해 memory attention을 이용하여 과거 히스토리가 반영되기 때문에 자연스러운 대화흐름을 잘 detection할 수 있으며, 기존 모델과의 성능비교에서 state-of-the art 결과를 도출하였다.

Acknowledgement

Supported by : 한국연구재단