Global Relation Extraction for Documents: Regarding Omitted Entities

문서 내 전역 관계 추출: 생략된 개체의 고려

  • 김규경 (고려대학교, NLP&AI 연구실) ;
  • 김경민 (고려대학교, NLP&AI 연구실) ;
  • 조재춘 (고려대학교, NLP&AI 연구실) ;
  • 임희석 (고려대학교, NLP&AI 연구실)
  • Published : 2018.10.12

Abstract

최근 존재하는 대부분의 관계 추출 모델은 언급 수준의 관계 추출 모델이다. 이들은 성능은 높지만, 문서에 존재하는 다수의 문장을 처리할 때, 문서 내에 주요 개체 및 여러 문장에 걸쳐서 표현되는 개체간의 관계를 분류하지 못한다. 이는 높은 수준의 관계를 정의하지 못함으로써 올바르게 데이터를 정형화지 못하는 중대한 문제이다. 해당 논문에서는 이러한 문제를 타파하기 위하여 여러 문장에 걸쳐서 개체간의 상호작용 관계도 파악하는 전역 수준의 관계 추출 모델을 제안한다. 제안하는 모델은 전처리 단계에서 문서를 분석하여 사전 지식베이스, 개체 연결 그리고 각 개체의 언급횟수를 파악하고 문서 내의 주요 개체들을 파악한다. 이후 언급 수준의 관계 추출을 통하여 1차적으로 단편적인 관계 추출을 실행하고, 주요개체와 관련된 관계는 외부 메모리에 샘플로 저장한다. 이후 단편적 관계들과 외부메모리를 이용하여 여러 문장에 걸쳐 표현되는 개체 간 관계를 알아낸다. 해당 논문은 이러한 모델의 구조도와 실험방법의 설계에 대하여 설명하였고, 해당 실험의 기대효과 또한 작성하였다.

Acknowledgement

Supported by : 한국콘텐츠진흥원