Restaurant Name Classification from Local Search Log using Deep Learning Model

딥러닝 모델을 활용한 로컬 검색로그에서 음식점 상호 판별

  • Published : 2018.10.12

Abstract

음식과 맛집에 대한 사용자의 정보검색 니즈가 나날이 증가하면서 서비스 제공자가 정보 제공의 대상이 되는 맛집 상호명을 파악하는 것은 중요한 이슈다. 그러나 업종의 특성상 점포가 새로 생겨나는 주기는 매우 짧은 반면, 신규 점포의 서비스 등록 시점에는 시간적 차이가 존재하는 문제가 있다. 본 논문에서는 신규 상호명을 능동적으로 파악하기 위해 위치기반 서비스 로그에서 맛집 상호명을 추출하는 문자 기반의 딥러닝 모델 및 방법론을 제시한다. 자체 구축한 학습 데이터셋으로 실험한 결과, 제안하는 모델이 기존 기계학습 모델보다 높은 정확도로 상호명을 분류할 수 있음을 확인하였다. 또한, 사전 학습된 모델을 검색로그에 적용하여 신규 상호명 후보를 추출함으로써 향후 상호명 DB를 능동적으로 업데이트 할 수 있는 가능성을 타진하였다.