언급 특질을 이용한 Bi-LSTM 기반 한국어 상호참조해결 종단간 학습

Korean Co-reference Resolution End-to-End Learning using Bi-LSTM with Mention Features

  • 발행 : 2018.10.12

초록

상호참조해결은 자연언어 문서 내에서 등장하는 명사구 언급(mention)과 이에 선행하는 명사구 언급을 찾아 같은 개체인지 정의하는 문제이다. 특히, 지식베이스 확장에 있어 상호참조해결은 언급 후보에 대해 선행하는 개체의 언급이 있는지 판단해 지식트리플 획득에 도움을 준다. 영어권 상호참조해결에서는 F1 score 73%를 웃도는 좋은 성능을 내고 있으나, 평균 정밀도가 80%로 지식트리플 추출에 적용하기에는 무리가 있다. 따라서 본 논문에서는 한국어 문서에 대해 영어권 상호참조해결 모델에서 사용되었던 최신 모델인 Bi-LSTM 기반의 딥 러닝 기술을 구현하고 이에 더해 언급 후보 목록을 만들어 개체명 유형과 경계를 적용하였으며 품사형태를 붙인 토큰을 사용하였다. 실험 결과, 문자 임베딩(Character Embedding) 값을 사용한 경우 CoNLL F1-Score 63.25%를 기록하였고, 85.67%의 정밀도를 보였으며, 같은 모델에 문자 임베딩을 사용하지 않은 경우 CoNLL F1-Score 67.92%와 평균 정밀도 77.71%를 보였다.

과제정보

연구 과제번호 : WiseKB: 빅데이터 이해 기반 자가학습형 지식베이스 및 추론 기술 개발

연구 과제 주관 기관 : 정보통신기술진흥센터