A Joint Learning Model for Speech-act Analysis and Slot Filling Using Bidirectional GRU-CRF Based on Attention Mechanism

주의집중 메커니즘 기반의 양방향 GRU-CRF를 이용한 화행 분석과 슬롯 필링 공동 학습 모델

  • Yoon, Jeongmin (Department of Computer Engineering, Dong-A University) ;
  • Ko, Youngjoong (Department of Computer Engineering, Dong-A University)
  • 윤정민 (동아대학교 컴퓨터공학과) ;
  • 고영중 (동아대학교 컴퓨터공학과)
  • Published : 2018.10.12

Abstract

화행 분석이란 자연어 발화를 통해 나타나는 화자의 의도를 파악하는 것을 말하며, 슬롯 필링이란 자연어 발화에서 도메인에 맞는 정보를 추출하기 위해 미리 정의되어진 슬롯에 대한 값을 찾는 것을 말한다. 최근 화행 분석과 슬롯 필링 연구는 딥 러닝 기반의 공동 학습을 이용하는 연구가 많이 이루어지고 있고 본 논문에서는 한국어 특허상담 도메인 대화 말뭉치를 이용하여 공동 학습 모델을 구축하고 개별적인 모델과 성능을 비교한다. 또한 추가적으로 공동 학습 모델에 주의집중 메커니즘을 적용하여 성능이 향상됨을 보인다. 최종적으로 주의집중 메커니즘 기반의 공동 학습 모델이 기준 모델과 비교하여 화행 분류와 슬롯 필링 성능이 각각 3.35%p, 0.54%p 향상되어 85.41%, 80.94%의 성능을 얻었다.

Acknowledgement

Grant : (엑소브레인-1세부) 휴먼 지식증강 서비스를 위한 지능진화형 WiseQA 플랫폼 기술 개발

Supported by : 정보통신기술진흥센터