TabQA : Question Answering Model for Table Data

TabQA : 표 양식의 데이터에 대한 질의응답 모델

  • Park, Soyoon (LG CNS, Information Technology Research Center) ;
  • Lim, Seungyoung (LG CNS, Information Technology Research Center) ;
  • Kim, Myungji (LG CNS, Information Technology Research Center) ;
  • Lee, Jooyoul (LG CNS, Information Technology Research Center)
  • Published : 2018.10.12

Abstract

본 논문에서는 실생활에서 쓰이는 다양한 구조를 갖는 문서에 대해서도 자연어 질의응답이 가능한 모델을 만들고자, 그 첫걸음으로 표에 대해 자연어 질의응답이 가능한 End-to-End 인공신경망 모델 TabQA를 제안한다. TabQA는 기존 연구들과는 달리 표의 형식에 구애받지 않고 여러 가지 형태의 표를 처리할 수 있으며, 다양한 정보의 인코딩으로 풍부해진 셀의 feature를 통해, 표의 row와 column 객체를 직관적이고도 효과적으로 추상화한다. 우리는 본 연구의 결과를 검증하기 위해 다채로운 어휘를 가지는 표 데이터에 대한 질의응답 쌍을 자체적으로 생성하였으며, 이에 대해 단일 모델 EM 스코어 96.0%에 이르는 결과를 얻었다. 이로써 우리는 추후 더 넓은 범위의 양식이 있는 데이터에 대해서도 자연어로 질의응답 할 수 있는 가능성을 확인하였다.