Extracting Supporting Evidence with High Precision via Bi-LSTM Network

양방향 장단기 메모리 네트워크를 활용한 높은 정밀도의 지지 근거 추출

  • 박채훈 (한국과학기술원, 전산학부) ;
  • 양원석 (한국과학기술원, 전산학부) ;
  • 박종철 (한국과학기술원, 전산학부)
  • Published : 2018.10.12

Abstract

논지가 높은 설득력을 갖기 위해서는 충분한 지지 근거가 필요하다. 논지 내의 주장을 논리적으로 지지할 수 있는 근거 자료 추출의 자동화는 자동 토론 시스템, 정책 투표에 대한 의사 결정 보조 등 여러 어플리케이션의 개발 및 상용화를 위해 필수적으로 해결되어야 한다. 하지만 웹문서로부터 지지 근거를 추출하는 시스템을 위해서는 다음과 같은 두 가지 연구가 선행되어야 하고, 이는 높은 성능의 시스템 구현을 어렵게 한다: 1) 논지의 주제와 직접적인 관련성은 낮지만 지지 근거로 사용될 수 있는 정보를 확보하기 위한 넓은 검색 범위, 2) 수집한 정보 내에서 논지의 주장을 명확하게 지지할 수 있는 근거를 식별할 수 있는 인지 능력. 본 연구는 높은 정밀도와 확장 가능성을 가진 지지 근거 추출을 위해 다음과 같은 단계적 지지 근거 추출 시스템을 제안한다: 1) TF-IDF 유사도 기반 관련 문서 선별, 2) 의미적 유사도를 통한 지지 근거 1차 추출, 3) 신경망 분류기를 통한 지지 근거 2차 추출. 제안하는 시스템의 유효성을 검증하기 위해 사설 4008개 내의 주장에 대해 웹 상에 있는 845675개의 뉴스에서 지지 근거를 추출하는 실험을 수행하였다. 주장과 지지 근거를 주석한 정보에 대하여 성능 평가를 진행한 결과 본 연구에서 제안한 단계적 시스템은 1,2차 추출 과정에서 각각 0.41, 0.70의 정밀도를 보였다. 이후 시스템이 추출한 지지 근거를 분석하여, 논지에 대한 적절한 이해를 바탕으로 한 지지 근거 추출이 가능하다는 것을 확인하였다.

Acknowledgement

Grant : SW 스타랩: 언어학적 분석 및 증거 문서 자동 수집을 통한 신뢰도 분포 자동 예측 및 자동 증강

Supported by : 정보통신기술센터