Analysis of Judicial Precedent Information related to Debt Recovery based on Deep-Learning

심층 학습 기반의 채권 회수 판례 분석

  • Published : 2018.10.12

Abstract

판례는 재판에 대한 선례로, 법적 결정에 대한 근거가 되는 핵심 단서 중 하나이다. 본 연구에서는 채권회수를 예측하는 서비스 구축을 위한 단서를 추출하기 위해 채권 회수 판례를 수집하여 이를 분석한다. 먼저 채권 회수 판례에 대한 기초 분석을 위하여, 채권 회수 사례와 비회수 사례를 각 20건씩 수집하여 분석하였으며, 이후 대법원 및 법률 지식베이스의 채권 관련 판례 12,457건을 수집하고 채권 회수 여부에 따라 가공하였다. 채권 회수 사례와 비회수 사례를 분류하기 위한 판례 내의 패턴을 분석하여 레이블링하고, 이를 자동 분류할 수 있는 Bidirectional LSTM 기반 심층학습 모델을 구성하여 학습하였다. 채권 관련 판례 가공 기준에 따라 네 가지의 데이터 셋을 구성하였으며, 각 데이터셋을 8:2의 비율로 나누어 실험한 결과, 검증 데이터에 대하여 F1 점수 89.82%의 우수한 성능을 보였다.

Acknowledgement

Supported by : 한국연구재단