Ontofitting: Specialization of Word Vectors for Semantic Representation

Ontofitting: 의미 표현을 위한 벡터 조정

  • Published : 2018.10.12

Abstract

우리는 단어 임베딩에 외부지식을 내재할 수 있는 Ontofitting 방법을 제안한다. 이 방법은 retrofitting의한 방법으로 유의어, 반의어, 상위어, 하위어 정보를 단어 임베딩에 내재할 수 있다. 유의어와 반의어 정보를 내재하기 위해서 벡터의 각 유사도를 사용하였고 상하위어 정보를 내재하기 위해서 벡터의 길이 정보를 사용하였다. 유의어 사이에는 작은 각도를 가지고 반의어 사이에는 큰 각도를 가지게 된다. 하위어는 상위어보다 상대적으로 작은 길이를 가지게 된다. SimLex와 HyperLex로 실험하여 효과와 안정성을 검증하였다. 의미정보를 내재한 임베딩을 사용할 수 있다면 QA, 대화 등 응용에서 보다 좋은 성능을 보일 수 있을 것이다.

Acknowledgement

Supported by : 한국연구재단