PB6) 임진강 상류 댐 저류에 의한 하류부 유출 영향 평가

김동필
한국건설기술연구원 국토보전연구본부

1. 서론
한반도의 공유하천인 임진강 상류 유역에 4월5일댐(2001~2012년 완공, 저수용량 약 0.9억 ㎥)과 황강댐(2007년 12월 완공, 저수용량 약 3.5억 ㎥)이 건설됨에 따라, 그 하류 유역은 댐 저류의 영향으로 물 부족 피해가 발생하고 있는 상황이다. 상류 댐 운영에 따른 물 부족 피해 대응을 위해 중류 유역에 군남홍수조절지가 건설되어 운영 중에 있다(2010년 6월 완공). 따라서 본 연구는 댐 저류량의 영향을 명확히 규명하기 위하여 임진교 수위관측소에 대해 댐 건설 이전의 자연유출량을 산정하고, 비홍수기의 관측유출량과 비교하여 그 영향을 평가하였다.

2. 자료 및 방법
본 연구에서는 자연유출량 산정을 위해 강우-유출 모형인 NWS-PC 모형을 이용하였다. 4월5일댐 건설 이전인 1999~2000년 기간을 검정기간으로, 2001~2005년 기간을 검증기간으로 설정하였다. 북한의 원산관측소 등 5개 관측소와 남한의 철원관측소 등 2개 관측소의 강우량자료와 기상자료를 수집하고, 모형의 입력자료인 강우량 자료와 FAO Penmann-Monteith 방정식을 이용하여 증발산량 자료를 1시간 단위로 구축하였으며, 모의를 통해 1시간 단위의 모의된 유출량 즉, 자연유출량을 산정하였다. 모의된 유출량과 관측유출량에 대해 2001년부터 2017년까지 비홍수기인 4~6월과 9~11월 기간의 유출량을 비교 평가하였다.

3. 결과 및 고찰
황강댐 건설 완공 이전, 즉 4월5일댐만의 영향을 받는 기간인 2001~2005년은 평균 0.369억 ㎥의 방류량이 발생하였으며, 4월5일댐은 전 기간, 황강댐은 2007년 12월 이후부터 영향을 받는 기간인 2006~2010년도에도 평균 0.419억 ㎥의 방류량이 발생한 결과로 볼 때 저류의 영향은 없는 것으로 분석되었다. 그러나 2011~2017년 기간은 평균 2.287억 ㎥의 댐 저류량이 발생하였으며, 이 기간은 대규모 다목적댐인 황강댐의 저류영향을 받는 기관으로 연간 저류량이 증가된 것으로 분석되었다. 전체 기간인 2001~2017년은 평균 0.710억 ㎥의 댐 저류량이 발생하였다.

| 구분 | 유역평균강우량 (㎜) | 관측값(억㎥) | 모의값(10억㎥) | 댐 저류량(억㎥) | 평균
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>평균 (2001~2005년)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4~6월</td>
<td>300.4</td>
<td>3.968</td>
<td>3.785</td>
<td>0.183</td>
<td></td>
</tr>
<tr>
<td>9~12월</td>
<td>278.7</td>
<td>7.960</td>
<td>7.404</td>
<td>0.556</td>
<td></td>
</tr>
<tr>
<td>총합</td>
<td>284.5</td>
<td>5.964</td>
<td>5.594</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>평균 (2006~2010년)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4~6월</td>
<td>330.9</td>
<td>6.560</td>
<td>5.702</td>
<td>0.858</td>
<td></td>
</tr>
<tr>
<td>9~12월</td>
<td>245.9</td>
<td>7.550</td>
<td>7.570</td>
<td>-0.020</td>
<td></td>
</tr>
<tr>
<td>총합</td>
<td>288.4</td>
<td>7.055</td>
<td>6.636</td>
<td>0.419</td>
<td></td>
</tr>
<tr>
<td>평균 (2011~2017년)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4~6월</td>
<td>254.7</td>
<td>1.808</td>
<td>2.993</td>
<td>-1.185</td>
<td></td>
</tr>
<tr>
<td>9~12월</td>
<td>219.8</td>
<td>1.873</td>
<td>5.261</td>
<td>-3.388</td>
<td></td>
</tr>
<tr>
<td>총합</td>
<td>237.3</td>
<td>1.841</td>
<td>4.127</td>
<td>-2.287</td>
<td></td>
</tr>
<tr>
<td>평균 (2001~2017년)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4~6월</td>
<td>287.6</td>
<td>3.841</td>
<td>4.023</td>
<td>-0.182</td>
<td></td>
</tr>
<tr>
<td>9~12월</td>
<td>244.8</td>
<td>5.333</td>
<td>6.571</td>
<td>-1.237</td>
<td></td>
</tr>
<tr>
<td>총합</td>
<td>266.2</td>
<td>4.587</td>
<td>5.297</td>
<td>-0.710</td>
<td></td>
</tr>
</tbody>
</table>

4. 참고문헌
김동필, 2018, 임진강 상류 댐 운영에 따른 하류부 유출 영향 분석, 충북대학교 대학원 박사학위논문.

 감사의 글
본 연구는 한국건설기술연구원의 주요사업인 수재해 방재 대응을 위한 수문조사의 연구비지원에 의해 수행되었습니다. 이에 감사드립니다.