I review the status of the concordance (standard) LCDM model of cosmology in light of current observations discussing about the apparent tensions in estimation of the key cosmological parameters. I will also briefly discuss the future of the field at the era of the next generation of the astronomical/cosmological surveys.

I found that the available constraints on the LCDM model are insufficient to rule out many alternatives, and also that the cosmological parameters are degenerate. Therefore, alternative galaxy assignment methods to N-body simulations are necessary for successful cosmological studies.

In this talk, I would like to introduce the MBP-galaxy abundance matching. This novel galaxy assignment method agrees with the spatial distribution of observed galaxies between 0.1Mpc ~ 100Mpc scales. I also would like to introduce mock galaxy catalogs of the Horizon Run 4 and Multiverse simulations, large-volume cosmological N-body simulations done by the Korean community. Finally, I would like to introduce some recent works with those mock galaxies used to understand our universe better.

Structure in the universe forms hierarchically with the small scales forming first and merging into larger scales. Galaxy clusters are at the pinnacle of the formation process. Peering far into the universe, we can observe galaxy clusters early in their evolution. SpARCSJ1049+56 is a galaxy cluster located at a redshift of 1.71. It has been shown to be rich in cluster galaxies, to have intense star formation, and to have a significant amount of molecular gas. Through careful control of systematics, we detected the weak-lensing signal from this distant galaxy cluster. I will present our HST infrared weak-lensing detection of the cluster with a focus on the method. Our lensing analysis found that the cluster is massive and is rare in a LambdaCDM universe. I will also present the Chandra X-ray discovery of cold gas coincident with the intense star formation and discuss the implications of the detection.
We present an improved weak-lensing (WL) study of the high-z (z=0.87) merging galaxy cluster ACT-CL J0102-4915 ("El Gordo"), the most massive system known to date at z > 0.6. El Gordo has been known to be an exceptionally massive and rare cluster for its redshift in the current ΛCDM cosmology. Previous multi-wavelength studies have also found that the cluster might be undergoing a merging event showing two distinctive mass clumps and radio relics. The previous WL study revealed a clear bimodal mass structure and found that the entire system is indeed massive (M_r200 = (3.13 ± 0.56) × 10^{15} M_{\odot}). This mass estimate, however, was obtained by extrapolation because the previous HST observation did not extend out to the virial radius of the cluster. In this work, we determine a more accurate mass estimate of the cluster using WL analysis utilizing a new set of WFC3/IR and wide-field ACS observations. While confirming the previous bimodal mass structure, we find that the new data yield a ∼20% lower mass for the entire system (M_r200 = (2.37 ± 0.28) × 10^{15} M_{\odot}). We also discuss the rarity of the cluster in the ΛCDM paradigm and suggest an updated merging scenario based on our new measurement.


Kim HyeongHan1, M. James Lee1,2, Lawrence Rudnick3, David Parkinson4, Kyle Finner4, Mijin Yoon4,5, Wonki Lee1, Gianfranco Brunetti6, Marcus Brüggen7, Jordan D. Collier8,9, Andrew M. Hopkins10, Michal J. Michalowksi11, Kyle P. Norris12,11, Chris Riseley13,15,16
1Yonsei University, Department of Astronomy, Seoul, Republic of Korea 2Department of Physics, University of California, Davis, California, USA 3Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, Minnesota, USA 4Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, Republic of Korea 5Ruhr-University Bochum, Astronomical Institute, German Centre for Cosmological Lensing, Universitätstr. 150, 44801 Bochum, Germany 6Istituto Nazionale di Astrofisica, Istituto di Radioastronomia Via P Gobetti 101, 40129 Bologna, Italy 7Hamburger Sternwarte, Universität Hamburg, Gojenbergsweeg 112, 21029 Hamburg, Germany 8Inter-University Institute for Data Intensive Astronomy, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa 9School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia 10Australian Astronomical Optics, Macquarie University, 105 Delhi Rd, North Ryde, NSW 2113, Australia 11Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, ul. Słoneczna 36, 60-266 Poznań, Poland 12Western Sydney University, Locked Bag 1797, Penrith South, NSW 1797, Australia 13CSIRO Astronomy & Space Science, PO Box 76, Epping, NSW 1710, Australia 14Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, via P. Gobetti 93/2, 40129 Bologna, Italy 15INAF - Istituto di Radioastronomia, via P. Gobetti 101, 40129 Bologna, Italy 16CSIRO Astronomy and Space Science, PO Box 1130, Bentley, WA 6102, Australia

The ASKAP-EMU survey is a deep wide-field radio continuum survey designed to cover the entire southern sky and a significant fraction of the northern sky up to +30°. Here, we report a discovery of a radio relic in the merging cluster SPT-CL J2023-5535 at z=0.23 from the ASKAP-EMU pilot 300 square degree survey (800-1088 MHz). The deep high-resolution data reveal a ∼2 Mpc-scale radio halo elongated in the east-west direction, coincident with the intracluster gas. The radio relic is located at the western edge of this radio halo stretched ~0.5 Mpc in the north–south orientation. The integrated spectral index of the radio relic within the narrow bandwidth is α_{\nu0.5-1.5GHz} = −0.76 ± 0.06. Our weak-lensing analysis shows that the system is massive (M_200 = 1.04 ± 0.36×10^{15} M_{\odot}) and composed of at least three subclusters. We suggest a scenario, wherein the radio features arise from the collision between the eastern and middle subclusters. Furthermore, the direct link between the local AGN and the relic along with the discontinuities in X-ray observation hint us that we are looking at the site of re-acceleration.

[구 GC-04] Circumnuclear gas around the central AGN in a cool-core cluster, A1644–South

Junhyun Baek1, Aeree Chung1, Jae-Woo Kim2, Taehyun Jung3
1Department of Astronomy, Yonsei University, 2Korea Astronomy and Space Science Institute (KASI), 3University of Science and Technology (UST)

We present the properties of circumnuclear gas associated with the AGN located in the center of Abell 1644–South. A1644–S is the main cluster in a merging system, which is also known for gas sloshing in its core as seen in X-ray. The X-ray emission of A1644–S shows a rapidly declining profile, indicating the presence of cooling gas flow.