[포 AE-02] Projecting and Researching GNSM’s Online Programs of Astronomical Contents
(국립과학관천문관 총문헌센터 온라인 프로그램 기획·연구)

Jaeil Cho(조재일), Daeyoung Park(박대영), Insun Ahn(안인선), Hyung-Kyu Jang(장형규)

1. Gwacheon National Science Museum(국립과학관천문관), 2. National Children’s Science Center(국립어린이과학관)

The pandemic of COVID-19 has made it difficult to gather participants in offline astronomical programs since March, 2020. For this reason Gwacheon National Science Museum has developed online programs of the partial solar eclipse and the Asteroid Day event in June, the celebration for launching Mars 2020 in July and Perseids in August. In this poster, we present how to plan each of them and research on methods that deliver astronomical contents to viewers effectively. In addition, we introduce preparing a couple of online programs in the rest of this year.

[포 IM-02] Disentangling the Assembly History of the Galactic Halo

Gwibong Kang, Young Sun Lee, Young Kwang Kim

Department of Astronomy, Space Science, Chungnam National University, Daejeon 34134, South Korea

The chemical and kinematic properties of stars in the Galactic halo provide crucial information on the origin of the Galactic halo as well as the assembly history of the Milky Way. In this study, we present metallicity distribution functions (MDFs) in different regions of the Galactic halo as well as the kinematic characteristics in each region. The different MDFs and kinematic properties of stars in investigated regions allow us to associate them with the possible progenitor dwarf galaxies discovered to date: hence the assembly history of the Galactic halo.

[포 IM-03] BISTROs and Varying Magnetic Fields with Density in Serpens Main

Woojin Kwon (권우진) on behalf of the BISTRO team
1. Seoul National University (서울대학교), 2. Korea Astronomy and Space Science Institute (한국천문연구원)

The B-fields in Star-forming Region Observations (BISTRO) is a large program of the James Clerk Maxwell Telescope (JCMT) to study the roles of magnetic fields in molecular clouds on intermediate scales (a few thousands au or larger scales), in which a large number of researchers over the world are involved. This project was initiated in 2016 with polarimetric observations of nearby star-forming regions and has been extended toward massive and farther regions (BISTRO-2) and various evolutionary stages and environmental conditions (BISTRO-3). The current status of the BISTRO projects is reported. In addition, we discuss magnetic fields in the Serpens Main molecular cloud, which is one of the BISTRO star-forming regions. Utilizing the Histogram of Relative Orientations method, which compares polarization directions with density gradients, we show that magnetic fields are parallel to filaments in less dense filamentary structures but