2DBAT to the separated circular motions. The rotation curve reflecting the total kinematics of the LMC, dark and baryonic matters is then be combined with the mass models of baryons, mainly stellar and gaseous components in order to examine the dark matter distribution. Here, we present the analysis of the extracted HI gas maps, rotation curve, and J, H and K-band surface photometry of the LMC.

[포 GC-04] HI gas kinematics of galaxy pairs in the Hydra cluster from ASKAP pilot observations

Shin-Jeong Kim1, Se-Heon Oh2, and ASKAP 1Department of Astronomy and Space Science, 2WALLABY Science Working Group2 (SWG2) Sejong University, Seoul, Korea

We examine the HI gas kinematics and distribution of galaxy pairs in group or cluster environment from high-resolution Australian Square Kilometre Array Pathfinder (ASKAP) WALLABY pilot observations. We use 22 well-resolved galaxies in the Hydra cluster of which 4 galaxies are visually identified as pairs and others are isolated ones. We perform profile decomposition of HI velocity profiles of the galaxies using a new tool, BAYGAUD which enables us to separate a line-of-sight velocity profile into an optimal number of Gaussian components based on Bayesian MCMC techniques. All the HI velocity profiles of the galaxies are decomposed into kinematically cold or warm gas components with their velocity dispersion, 4–8 km/s or > 8 km/s, respectively. We derive the mass fraction of the kinematically cold gas with respect to the total HI gas mass, \(f = \log_{10}(M_{\text{cold}} / M_{\text{HI}}) \), of the galaxies and correlate them with their dynamical mass. The cold gas reservoir of the paired galaxies in the Hydra cluster is found to be relatively higher than that of the isolated ones which show a negative correlation with the dynamical mass in general.

[포 GC-05] Galaxy overdensity around sub-mm sources from SPT-SZ survey

Yeonsik Kim1, Hyujin Shin2
1Department of Astronomy and Atmospheric Sciences, Kyungpook National University, 2Department of Earth Science Education, Kyungpook National University

We study the overdensity of near-infrared sources around 508 sub-mm sources classified as dusty galaxies in the SPT-SZ survey catalog observed in 95 GHz (3.15 mm), 150 GHz (2 mm) and 250 GHz (1.2 mm) bands. We used the VISTA hemisphere survey data release 6 (VHS DR6) catalog covering the J, H, Ks bands. The mean number of galaxies within a radius of 60 arcsec (corresponding to about 500 kpc at \(z = 2 \)) from 500 randomly selected positions is 14.4, while the galaxy number distribution is approximated as a Gaussian with a standard deviation of 7.9. From the 2500 deg\(^2\) of SPT-SZ survey + VHS DR6 data, there were 27 sub-mm sources that have galaxy overdensity higher than 4\(\sigma \). We present color-magnitude diagram around 27 selected sub-mm sources with enhanced galaxy surface densities, in order to investigate the presence of structure around sub-mm sources.

[포 GC-06] GAS KINETICS AND PHOTOIONIZATION IN TYPE 1 AGNs WITH STRONG OUTFLOWS

CHANGSEOK KIM1, JONG-HAK WOO1, RONGXIN LUO2
1Astronomy Program, Department of physics and Astronomy, Seoul National University 151–742, Korea
2Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai 200030, China

We present spatially resolved outflows and photoionization for a pilot sample of 11 type 1 AGNs (\(z < 0.3 \)) based on the Gemini Multi-Object Spectrograph Integral Field Unit data. These AGNs were selected since we found strong outflow signatures in SDSS spectra. We focus on \([\text{OIII}]\) and \(\text{H}\alpha \) emission lines to probe outflow kinematics by measuring line flux, velocity, and velocity dispersion at each pixel. We investigate characteristics of gas kinematics of type 1 AGNs and compare them with those of type 2 AGNs in our previous studies. Furthermore, by drawing BPT map, photoionization states will be also discussed. Based on the results, we discuss various implications on the impacts of outflows on star formation in host galaxies.

[포 GC-07] Gas kinematics and star formation in NGC 6822

Hye-Jin Park1, Se-Heon Oh2, Jing Wang3,4, Yun Zheng3,4, Hong-Xin Zhang5,6, and W.J.G. de Blok7,8,9
1Department of Astronomy and Space Science, Sejong University, Seoul, Korea
2Department of Physics and Astronomy, Sejong University, Seoul, Korea
3Kavli Institute for Astronomy and Astrophysics
We present H I gas kinematics and star formation activities of NGC 6822, a dwarf galaxy located in the Local Volume at a distance of ~490 kpc. We perform profile decomposition of the line-of-sight velocity profiles of the high-resolution (~42.4" x 12") spatial: ~1.6 km/s spectral) H I data cube taken with the Australia Telescope Compact Array (ATCA). For this, we use a new tool, the so-called BAYGAUD (BAyesian GAussian Decomposer) which is based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, allowing us to decompose a line-of-sight velocity profile into an optimal number of Gaussian components in a quantitative manner. We classify the decomposed H I gas components of NGC 6822 into kinematically cold, warm or hot ones with respect to their velocity dispersion: 1) cold: < 4 km/s, 2) warm: 4 - 8 km/s, 3) hot: > 8 km/s. We then derive the Toomre–Q parameters of NGC 6822 using the kinematically decomposed H I gas maps. We also correlate their gas surface densities with the surface star formation rates derived using both GALEX far-ultraviolet and WISE 22 micron data to examine the impact of gas turbulence caused by stellar feedback on the Kennicutt–Schmidt (K–S) law. The kinematically cold component is likely to better follow the linear extension of the Kennicutt–Schmidt (K–S) law for molecular hydrogen (H2) at the low gas surface density regime where H I is not saturated.

Astronomy and Astrophysics: Department of Astronomy, Peking University

We present a scaling relation between black hole (BH) mass and bulge luminosity for 35 nearby (z < 0.1) type 1 active galaxies, selected from the 70-month Swift–BAT X-ray source catalog. Thanks to the unbiased selection and proximity of the parent sample, our sample is suitable to study the physical connection between central black holes and host galaxies. We use the F814W images obtained with the Advanced Camera for Surveys on Hubble Space Telescope, to perform the imaging decomposition with GALFIT. With a careful treatment on the PSF model, we measure the I-band bulge brightness robustly. In combination with the BH mass estimated from a single-epoch spectroscopic data, we present the correlation between BH mass and bulge luminosity of the target AGNs. We demonstrate that our sample marginally lies off from the M(BH)–L(bulge) relation of inactive galaxies. We discuss possible physical origins of this discrepancy. Finally, we present how the relation depends on the photometric properties of AGNs and host galaxies, which may provide an useful insight on the co-evolution between BHs and host galaxies.

Astronomy and Astrophysics: Department of Astronomy, Peking University

[포 GC-09] A Wide Field Survey of Intracluster Globular Clusters in Coma and Perseus Galaxy Clusters

Seong-A O, Myung Gyooung Lee
Astronomy program, Department of Physics and Astronomy, Seoul National University

Globular clusters(GCs) are found not only around galaxies (galaxy GCs), but also between galaxies in galaxy clusters (intracluster GCs: ICGCs). The ICGCs, which are not bound to any of cluster member galaxies, are governed by the galaxy cluster potential. ICGCs have been detected in the wide field of Virgo and Fornax galaxy clusters.

However, previous surveys covered only a small fraction of Coma and Perseus. In this study we present a wide field survey of these two galaxy clusters, using Subaru Hyper Suprime-Cam(HSC) archival images, covering a circular field with diameter of ~1.8 deg. We select ICGC candidates, by masking the images of bright galaxies and choosing point sources in the remaining area. We find thousands of ICGCs in each galaxy cluster. These ICGCs show a bimodal color distribution, which is dominated by blue GCs. We investigate spatial distributions and radial number density profiles of the blue and red ICGCs in each galaxy cluster. Implications of the results will be discussed.