가상화폐기반 P2P 전기자동차 전력거래 시스템

한예지, 신수정
전북대학교 IT정보공학과
e-mail: yeji5281@gmail.com, ssj4980@hanmail.net

Charging Management based on blockchain for electric vehicles

Ye-Ji Han, Su-Jeong Shin
Department of Information Technology and Engineering,
Jeonbuk national University

요 약
기존의 중앙 집중형 에너지 거래 방식을 블록체인 기반의 분산형 거래방식으로 변경하여 누구나 공급자나 수요자(프로슈arer)가 될 수 있고, 투명하고 신뢰성있는 에너지 거래가 이루어지도록 한다. 이러한 거래가 이루어지기 위해 공급자와 수요자를 연결하고, 공급 및 수요를 효율적으로 관리하여 새로운 투가가치를 창출하는 시스템을 개발한다.

1. 서론

파리기후협약 이후 전 세계는 친환경 에너지 개발에 맞춰 기술력을 키우고 있다. 이에 따라 화학 연료를 사용하는 내연기관 자동차를 대체하여 전기자동차가 주목을 받고 있다. 전기자동차가 미래 시대에 적합하다고 여겨지는 이유는 리튬 전고체 배터리의 상용화로 배터리 용량이 늘어날 것으로 전망되기 때문이다. 또한, 가격적 측면에서 도 전기자동차는 일반 자동차보다 더 큰 효율성을 가지고 있다. 전기자동차의 배터리 충전 비용은 일반 자동차의 유류값의 절반에도 못 미칠 정도로 저렴하고, 주차가에 충전소를 설치한다면 집에서 전력을 충전하고 바로 출근할 수 있는 생활이 가능하다.

 이를 바탕으로 최근에는 개인 간 전력을 공유하는 전력거래가 해외에서 진행되고 있다는 사례를 찾을 수 있으며 우리는 이 개인 간의 전력거래가 자동차라는 매체를 두면서 거래를 더 쉽게 활발하게 만들 수 있다고 판단한다. 더불어 거래 시스템에 블록체인 기술을 융합하여 공급자와 수요자간 거래를 블록체인 기반의 분산형 거래방식으로 변경할 때 나타나는 이점을 활용하기로 한다.

블록체인은 네트워크에 참여하는 모든 사용자가 관리대상이 되는 모든 데이터를 분산하여 저장하는 데이터 분산처리기술을 말한다. 따라서 본 논문에서는 투명하고 신뢰성을 담은 에너지 거래 시스템을 구축하고 수요 및 공급을 효율적으로 관리하여 새로운 부가가치를 창출하는 시스템을 제안한다.

2. 전력 거래 시스템

2-1. EVT 토큰 발행

블록체인 기술의 특성 중 하나인 가상화폐 즉 토큰이라는 개념을 도입한다. 가상화폐는 전기자동차 간의 전력거래를 위한 토큰이란 EVT 토큰이며, 전기자동차 간의 전력 거래는 오직 EVT 만을 이용하여 수행될 수 있다. 가상화폐 EVT는 블록체인 앱(Decentralized application, DAPP) 상에서 이루어지고, 필요할 때 형질화되는 방식으로 진행된다.

EVT는 전세계 토큰의 기준 ERC-20(Ethereum Request for Comment)을 바탕으로 개발되어 화폐 거래 뿐만 아니라 자동차 정보와 전력 거래 정보를 기록할 수 있다. 상기 정보는 블록 생성 정보와, 거래하는 전기자동차의 현재 전력 상태, 거래 완료시 전력 상태, 자동차 번호를 이용할 수 있다.

거래 시스템으로서 EVT와 같은 기존의 기준에 부합할 수 있도록 개발된 기준을 만족할 수 있는 기준을 만족한다. 또한, 현재는 전력 거래에 사용하기 위해 발행되는 EVT의 개수는 1,000,000개로 제한한다.

2-2-1. 시스템 개요

공급 전기자동차와 수요 전기자동차 각각으로부터 현재 배터리 용량과 충전 전력의 판매 또는 구매 후의 배터리 용량에 대한 정보를 수집한다. 현재 배터리 용량과 충전 전력의 판매 또는 구매 후의 배터리 용량에 기초하여 전기자동차의 상태를 고려한 가장 효율적인 공급 전기자동차와 수요 전기자동차를 매칭하거나, 거래 상대 선택 권한을 부여한다.
공급 전기자동차와 수요 전기자동차 간에, 소정 단가에 기초하여 충전 전력의 유상 거래가 성립된다. 
유상 거래에 대한 정보를 포함하는 블록을 생성하고, [그림 1] 전력거래 호르도 생성된 블록을 전력 거래 시스템에 등록된 복수개의 전기자동차에게 분산하여 전송한다.

2-2-2. DAPP 구현

[그림 2] 명령 프롬프트, Genesis block 정보

[그림 3] Dapp 화면, Ethereum와 EVT 환경


[그림 4] Ganache, 10Eth - 100EVT 환전 내역

[그림 4]처럼 명령프롬프트 뿐만 아니라 Ganache 가상 네트워크 상에서도 실시간으로 블록에 기록된 정보와 이벤트들을 확인 할 수 있다.

[그림 5] 차량 정보 등록

사용자는 가상 네트워크 상에서 만들어진 계정에 전기자동차 정보를 입력한다. [그림 5]는 사용자로부터 전기자동차 정보를 받아 블록에 등록하는 화면이다. 본 시스템은 차주 정보(차 번호, 이름)와 현재 전력 상태, 원하는 전력 상태를 수신한다. 현재 전력 상태와 원하는 전력 상태에 기초하여 현재 보유한 전력량보다 원하는 전력량이 적으면 판매자로 등록하고 반대일시 소비자로 등록하여 차량으로 판매자와 소비자를 구분한다.

[그림 6] 거래 목록, (좌)거래 완료 (우)거래 가능
입력된 정보는 [그림 6]과 같이 거래 플랫폼에 등록되어 사용자 모두가 확인할 수 있다. 소비자가 판매자의 정보를 확인하고 자신의 거래에 실패한 판매자를 선택하여 거래를 진행한다. 혹은 매칭 알고리즘을 통해 판매자와 소비자가 매칭되어 전략을 강화하여 EVT를 이용하여 해당 금액을 추정한다. 현재 알고리즘은 선택신중 알고리즘을 사용하고 있으나 사용자의 요구 전력량을 고려하도록 알고리즘을 보완할 수 있다.

나아가, 정부는 전기자동차 사용을 장려하여 전환정 에너지 사업에 도움이 될 수 있다. 전기자동차의 전력뿐만 아니라, 탄소 배출량이 낮은 전력 관리 시스템 등의 다양한 신재생 에너지의 코용 시스템에도 적용될 수 있다. 플랫폼 제공자는 도시간(가상화폐)을 이용하여 거래 수수료를 이용을 창출할 수 있으며 거래가 성립될 때마다 내부에서 자동으로 발생되는 정책의 비용만큼의 수수료를 받을 수 있다.

전기자동차의 차주는 시간별 전력 가격 차이를 이용하여 이용을 창출할 수 있다. 현재 한국전력 전기자동차 충전 서비스에 의하면 시간별로 충전 요금(경부 시간대, 중간부하 시간대, 최대부하 시간대)이 다르게 나누어져 있다.

<table>
<thead>
<tr>
<th>구분</th>
<th>여름철</th>
<th>분철 및 가을철</th>
<th>겨울철</th>
</tr>
</thead>
<tbody>
<tr>
<td>정부부 시간대</td>
<td>23~9시</td>
<td>23~9시</td>
<td>23~9시</td>
</tr>
<tr>
<td>중간부하 시간대</td>
<td>17~23시</td>
<td>17~23시</td>
<td>17~23시</td>
</tr>
<tr>
<td>최대부하 시간대</td>
<td>17~23시</td>
<td>17~23시</td>
<td>20~22시</td>
</tr>
</tbody>
</table>

[표 1] 계절별 적응 시간대

<table>
<thead>
<tr>
<th>구분</th>
<th>여름철</th>
<th>분철 및 가을철</th>
<th>겨울철</th>
</tr>
</thead>
<tbody>
<tr>
<td>정부부 시간대</td>
<td>83.6원</td>
<td>84.1원</td>
<td>95.5원</td>
</tr>
<tr>
<td>중간부하 시간대</td>
<td>129.0원</td>
<td>90.3원</td>
<td>120.2원</td>
</tr>
<tr>
<td>최대부하 시간대</td>
<td>174.3원</td>
<td>92.8원</td>
<td>152.6원</td>
</tr>
</tbody>
</table>

[표 2] 시간별 충전요금(원/kWh, 부가세 별도, 2020-05 기준)

이와 같이 전기는 시간대마다 가격이 다르다. 따라서, 본 발명에 따른 전력거래 시스템은 이용하여 전기가 저렴할 때 집에서 전사를 충전하고, 전기가 비반이 며 전력을 필요로 하는 다른 전기자동차에게 전기를 팔 수 있다.

예를 들어, 여름철을 기준으로 정부부 시간대에 100kWh 충전 시 8360원이 소요된다. 만약, 충전한 전력을 사용하지 않고 다른 전기자동차에 판매한다면 가정하면, 최대부하 시간대에 80kWh 판매 시 13,944원(=174.3원 × 80kWh)의 판매 이득을 얻게 된다. 이 경우, 순익은 13,944원 - 8360원 = 5584원 이 된다.

따라서, 높은 배터리의 완충식이 필요하다는 만큼만 남긴 후, 최대부하 시간대에 가지고 있는 전기 를 판매하면 전력 거래로 수익을 창출할 수 있을 것이다.

2-3. 기대 및 전망

본 시스템은 기존의 중량 집중형 에너지 거래 방식을 분력제한 기반의 분산형 거래방식으로 변경함으로써, 누구나 전력의 공급자나 수요자(프로슈며)가 될 수 있게 한다. 분력제한에 기초하여 전력 거래를 수행함으로써, 높은 보안성이 높은 에너지 거래가 이루어질 수 있고, 적절 수요 및 공급을 효율적으로 관리하여 새로운 부가가치를 창출할 수 있다.

전력 거래 시 가상화폐를 사용함으로써, 현금거래 시 필요한 장돈이나 카드거래 시 필요한 단말기를 없애 전력 정산이 가능해지고 거래 비용도 감소된다.
3. 결론 및 고찰

본 논문에서 제안하는 시스템은 공급 전기자동차와 수요 전기자동차 간의 이더리움 기반의 토큰 및 전력 거래가 가능하게 하는 프로그램이다. 이더리움 기반의 토큰을 도입하여 수수료 기반의 토큰 경제를 설계할 수 있고, 스마트 계약을 활용하여 거래정보뿐만 아니라 전기자동차의 정보 또한 블록체인에 저장되는 이점은 앞으로 발생할 수 있는 거래의 보안성을 향상시키는데 기여할 것이다.

블록체인 특성상 거래가 발생했을 때 블록이 생성되어야 하고 작업증명률 처리하는 시간이 필요하기 때문에 오랜 시간이 소요된다는 점, 자동차와 자동차 간의 전력 거래를 가능하게 하는 물리적 충전 장치가 개발되어야 한다는 점 등에서 향후 연구가 필요하다.

참고문헌

[2] 이승문, 김재경, “네트워크 기반의 전기자동차 충전인프라 구축 방안 연구”, 에너지경제연구원, 기본연구보고서 16-08, pp.75-113