GAN 기반 고해상도 의료 영상 생성을 위한 연구

고재영*, 조백환**, 정명진**

*성균관대학교 삼성융합의과학원 디지털헬스학과
**삼성서울병원 스마트헬스케어연구소 AI 연구센터
kojae8311@s.kku.edu, backhwan.cho@samsung.com, mj1.chung@samsung.com

GAN-based research for high-resolution medical image generation

*Dept. of Digital Health, SAIHST, Sungkyunkwan University
**Medical AI Research Center, Smart Healthcare Research Institute, Samsung Medical Center

요 약

의료 데이터를 이용하여 인공지능 기계학습 연구를 수행할 때 자주 마주하는 문제는 데이터 불균형, 데이터 부족 등이며 특히 정제된 충분한 데이터를 구하기 힘들다는 것이 큰 문제이다. 본 연구에서는 이를 해결하기 위해 GAN(Generative Adversarial Network) 기반 고해상도 의료 영상을 생성하는 프레임워크를 개발하고자 한다. 각 해상도마다 Scale 의 Gradient 를 동시에 학습하며 빠르게 고해상도 이미지를 생성해낼 수 있도록 했다. 고해상도 이미지를 생성하는 Neural Network 를 고안하였으며, PGGAN, Style-GAN 과의 성능 비교를 통해 제한된 모델이 얕질의 고해상도 의료영상 이미지를 더 빠르게 생성할 수 있음을 확인하였다. 이를 통해 인공지능 기계학습 연구에 있어서의 의료 영상의 데이터 부족, 데이터 불균형 문제를 해결할 수 있는 Data augmentation 이나, Anomaly detection 등의 연구에 적용할 수 있다.

1. 서론

인공지능 기계학습 연구에서는 품질 좋은 데이터를 이용하여 연구의 성과가 달라질 수 있기 때문에 데이터를 확보하는 것이 중요하다. 특히 의료 분야에서는 privacy issue, annotation 에 필요한 노력 등 다양한 문제로 인해 정제된 영상의 데이터를 대량으로 확보하기가 어렵다.

흡부 방사선 영상 (Chest X-ray) 환영은 병원에서 가장 대중적으로 이루어지고 있는 검사 중 하나로 의료 영상 데이터 중에는 상대적으로 데이터의 개수가 많지 않지만 적절한 몇몇의 병변에 대한 annotation 을 위해서는 훨씬 많은 자원을 필요로 한다. 또한 필수적인 검진을 위해서 Chest X-ray 활영을 많이하기 때문에 정상(normal) 데이터가 비정상(abnormal) 데이터에 비해 데이터량이 많아 데이터 불균형 현상이 발생한다. 이러한 문제들을 해결하기 위해 생성 모델(Generative model)들을 이용한 연구들이 진행되고 있다.

고해상도 영상을 생성하는 대표적인 모델인 PGGAN[4]은 Discriminator 와 Generator 를 결합적으로 layer 를 쌓아 영상의 해상도를 증가시키면서 학습을 진행하는 특징을 갖고 있다. 하지만 이와 같은 방법으로 학습을 진행하는 것은 학습에 매우 많은 시간이 걸린다는 단점이 있으며, 충분한 학습 데이터가 필요하다. 그러나 의료 데이터 특성상 다른 분야의 데이터에 비해 데이터량이 상대적으로 부족하므로 데이터에 적은 상태로 학습을 진행할 시 학습이 불안정하게 진행될 우려가 크다. 따라서 우리는 본 연구에서 의료 영상 데이터의 근본적 문제인 데이터 불균형 문제와 데이터량 부족 문제를 해결하기 위해 GAN 기반 고해상도 의료 영상 이미지를 생성하는 연구를 진행했다.

2. 방법

2-1. 데이터

삼성서울병원에서 활용한 흡부 방사선 영상은 40,301 명의 환자에서 80,675 개의 데이터로 구성된 DICOM 형식의 익명화된 흡부 방사선 데이터 셋이다. 사용된 데이터는 측면 방사선 이미지(Lateral Chest radiograph)
와 전면 방사선 영상(Posteroanterior Chest radiograph)으로 구성되어 있다. 본 연구에서는 전면 방사선 사진만 필요하므로 전면 방사선 사진인 PA Chest radiograph 로만 연구를 진행했다. 최종적으로 본 연구에서는 40,940 개의 데이터로 연구를 진행했다.

2-2. 전처리
방사선 전문가들은 활용된 방사선 영상을 관찰할 때 Histogram 을 조절해서 관찰하기 적절한 상태로 변경하여 관찰을 진행한다. 본 연구에 사용된 영상도 동일한 효과를 적용하기 위해 Contrast Limited Adaptive Histogram Equalization 을 이용하여 방사선 영상의 전처리를 진행했다. 또한 원본 방사선 영상 크기의 5% 만큼 Random Crop 을 적용한 후 512x512 크기로 resize를 해주었다. 또한 PGGAN의 구조와 그대로 사용하기 때문에 Feature vector 를 RGB Color로 만들어 주는 layer 를 적용하기 위해 Gray Scale 영상을 duplication을 통해 3채널 영상을 RGB 로 변경하였으며, 메모리를 효율적으로 사용하기 위해 DICOM 이미지를 Pickle 형태로 변환하였다.

2-3. 네트워크

3. 연구 결과
PGGAN[4]와 Style-GAN 모델을 사용해서 CelebA-HQ 데이터로 학습을 진행한 결과는 (그림 2)와 같이 보다 안정적으로 학습이 진행되었지만 본 연구에서 사용한 PA Chest radiograph 으로 학습을 진행한 결과는 (그림 3)과 같이 학습이 불안정하게 학습이 진행되어 학습 영상과 전혀 다른 형태의 영상을 생성하였다.
본 연구에서는 제안한 모델을 사용한 결과는 (그림 4)와 같이 안정적으로 학습이 진행된 결과를 확인할 수 있었다. GAN 모델의 성능을 정량적으로 확인하기 위해 <표 1>과 같이 Epoch마다 FID(Frédchet Inception distance)[8] Score를 측정하였다. 기존 GAN Model들에 비해 제안한 Self Attention PGGAN이 FID Score가 가장 낮았으며 특히 상대적으로 다른 모델들에 비해 Epoch이 낮아도 안정적이고 빠르게 데이터 생성을 하고 있다는 것을 확인할 수 있었다.

![Self Attention PGGAN](image1)

(그림 4) Self Attention PGGAN과 Relativistic Hinge GAN Loss를 이용한 Chest X-ray 생성 결과.

<표 1> Chest x-ray를 이용한 GAN Model의 Epoch에 따른 Frédchet Inception distance (FID)

<table>
<thead>
<tr>
<th>Methods</th>
<th>FID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoch</td>
<td>10</td>
</tr>
<tr>
<td>DCGAN[5]</td>
<td>9045.36</td>
</tr>
<tr>
<td>PGGAN[4]</td>
<td>305.43</td>
</tr>
<tr>
<td>Style-GAN[7]</td>
<td>206.53</td>
</tr>
<tr>
<td>Self Attention PGGAN</td>
<td>35.36</td>
</tr>
</tbody>
</table>

4. 결론
본 논문에서는 PA Chest radiograph 데이터를 이용하여 고해상도 이미지를 만들어도 연구를 진행했다. 제안한 모델은 PGGAN 구조에 Self Attention Module을 적용하여, 기존의 모델에 비해 안정적으로 (그림 5)와 같이 고해상도 의료 영상을 생성하는 것을 확인하였 다.

![생성된 이미지](image2)

(그림 5) 생성된 512 x 512 홍부 방사선 사진.